Skip to main content

Engineering Organoid Systems to Model Health and Disease

  • Chapter
  • First Online:
Book cover Cell Therapy

Abstract

Much of the in vitro study of organs relies on responses from monolayers composed of one or more cell types; however, in many cases, this simplistic modeling of the organ system does not replicate how cells behave in vivo in the context of their organ and organism. While many useful cell characteristics can be deduced from 2D cell cultures, a full understanding of organ systems and biology requires studying cells in the context of their native environment. Traditionally, animal models have fulfilled this role; however, in the past decade, techniques and technologies to grow 3D tissue organoids in culture have been developed as an intermediate or replacement for in vivo studies. In this chapter, we review the genesis of organoid culture systems and provide an in-depth view of several fields that have been significantly impacted by organoid technology. Finally, we summarize emerging applications of organoids in modeling health and disease, treating patients, and discovering novel pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masters JR. TIMELINEHeLa cells 50 years on: the good, the bad and the ugly. Nat Rev Cancer. 2002;2(4):315–9.

    Article  CAS  PubMed  Google Scholar 

  2. Scannell JW, Bosley J. When quality beats quantity: decision theory, drug discovery, and the reproducibility crisis. PLoS One. 2016;11(2):e0147215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov. 2005;4(10):825–33.

    Article  CAS  PubMed  Google Scholar 

  4. Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther. 2016;7(1):125.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213(2):341–7.

    Article  CAS  PubMed  Google Scholar 

  6. Keating A. Mesenchymal stromal cells: new directions. Cell Stem Cell. 2012;10(6):709–16.

    Article  CAS  PubMed  Google Scholar 

  7. Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell. 2008;2(4):313–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ankrum J, Karp JM. Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol Med. 2010;16(5):203–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ankrum J, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol. 2014;32(3):252–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells. Exp Hematol. 2000;28(6):707–15.

    Article  CAS  PubMed  Google Scholar 

  11. Kretlow JD, Jin Y-Q, Liu W, Zhang WJ, Hong T-H, Zhou G, et al. Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol. 2008;9(1):60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Larson BL, Ylöstalo J, Prockop DJ. Human multipotent stromal cells undergo sharp transition from division to development in culture. Stem Cells. 2008;26(1):193–201.

    Article  CAS  PubMed  Google Scholar 

  13. Boquest AC, Shahdadfar A, Frønsdal K, Sigurjonsson O, Tunheim SH, Collas P, et al. Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Mol Biol Cell. 2005;6(3):1131–41.

    Article  CAS  Google Scholar 

  14. Bara JJ, Richards RG, Alini M, Stoddart MJ. Concise review: bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic. Stem Cells. 2014;32(7):1713–23.

    Article  CAS  PubMed  Google Scholar 

  15. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem. 1997;64(2):278–94.

    Article  CAS  PubMed  Google Scholar 

  16. Prockop DJ, Olson SD. Clinical trials with adult stem/progenitor cells for tissue repair: let’s not overlook some essential precautions. Blood. 2007;109(8):3147–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moll G, Rasmusson-Duprez I, Bahr von L, Connolly-Andersen A-M, Elgue G, Funke L, et al. Are therapeutic human mesenchymal stromal cells compatible with human blood? Stem Cells. 2012;30(7):1565–74.

    Article  CAS  PubMed  Google Scholar 

  18. Galipeau J. The mesenchymal stromal cells dilemma--does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy. 2013;15(1):2–8.

    Article  PubMed  Google Scholar 

  19. Saleh FA, Genever PG. Turning round: multipotent stromal cells, a three-dimensional revolution? Cytotherapy. 2011;13(8):903–12.

    Article  PubMed  Google Scholar 

  20. Sart S, Tsai A-C, Li Y, Ma T. Three-dimensional aggregates of mesenchymal stem cells: cellular mechanisms, biological properties, and applications. Tissue Eng Part B Rev. 2014;20(5):365–80.

    Article  PubMed  Google Scholar 

  21. Achilli T-M, Meyer J, Morgan JR. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther. 2012;12(10):1347–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Spheroid culture of mesenchymal stem cells. Hindawi Publishing Corporation. http://www.hindawi.com/journals/sci/2015/837126/

  23. Bartosh TJ, Ylostalo JH, Mohammadipoor A, Bazhanov N, Coble K, Claypool K, et al. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci U S A. 2010;107(31):13724–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Steck E, Bertram H, Abel R, Chen B, Winter A, Richter W. Induction of intervertebral disc–like cells from adult mesenchymal stem cells. Stem Cells. 2005;23(3):403–11.

    Article  CAS  PubMed  Google Scholar 

  25. Arufe MC, la Fuente DA, Fuentes Boquete I, De Toro FJ, Blanco FJ. Differentiation of synovial CD-105+ human mesenchymal stem cells into chondrocyte-like cells through spheroid formation. J Cell Biochem. 2009;108(1):145–55.

    Article  CAS  PubMed  Google Scholar 

  26. Potapova IA, Gaudette GR, Brink PR, Robinson RB, Rosen MR, Cohen IS, et al. Mesenchymal stem cells support migration, extracellular matrix invasion, proliferation, and survival of endothelial cells in vitro. Stem Cells. 2007;25(7):1761–8.

    Article  CAS  PubMed  Google Scholar 

  27. Frith JE, Thomson B, Genever PG. Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng Part C Methods. 2010;16(4):735–49.

    Article  CAS  PubMed  Google Scholar 

  28. Prockop DJ. “Stemness” does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin Pharmacol Ther. 2007;82(3):241–3.

    Article  CAS  PubMed  Google Scholar 

  29. Bahr von L, Batsis I, Moll G, Hägg M, Szakos A, Sundberg B, et al. Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells. 2012;30(7):1575–8.

    Article  CAS  Google Scholar 

  30. Lee RH, Seo MJ, Pulin AA, Gregory CA, Ylostalo J, Prockop DJ. The CD34-like protein PODXL and alpha6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice. Blood. 2009;113(4):816–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bartosh TJ, Ylostalo JH, Bazhanov N, Kuhlman J, Prockop DJ. Dynamic compaction of human mesenchymal stem/precursor cells into spheres self-activates caspase-dependent IL1 signaling to enhance secretion of modulators of inflammation and immunity (PGE2, TSG6, and STC1). Stem Cells. 2013;31(11):2443–56.

    Article  CAS  PubMed  Google Scholar 

  32. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009;5(1):54–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bazhanov N, Ylostalo JH, Bartosh TJ, Tiblow A, Mohammadipoor A, Foskett A, et al. Intraperitoneally infused human mesenchymal stem cells form aggregates with mouse immune cells and attach to peritoneal organs. Stem Cell Res Ther. 2016;7(1):27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ylostalo JH, Bartosh TJ, Coble K, Prockop DJ. Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype. Stem Cells. 2012;30(10):2283–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bartosh TJ, Ylostalo JH. Preparation of anti-inflammatory mesenchymal stem/precursor cells (MSCs) through sphere formation using hanging-drop culture technique. Curr Protoc Stem Cell Biol. 2014;28:Unit2B.6.

    Google Scholar 

  36. Cheng N-C, Chen S-Y, Li J-R, Young T-H. Short-term spheroid formation enhances the regenerative capacity of adipose-derived stem cells by promoting stemness, angiogenesis, and chemotaxis. Stem Cells Transl Med. 2013;2(8):584–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bhang SH, Lee S, Shin J-Y, Lee T-J, Kim B-S. Transplantation of cord blood mesenchymal stem cells as spheroids enhances vascularization. Tissue Eng Part A. 2012;18(19–20):2138–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ho SS, Murphy KC, Binder BYK, Vissers CB, Leach JK. Increased survival and function of mesenchymal stem cell spheroids entrapped in instructive alginate hydrogels. Stem Cells Transl Med. 2016;5(6):773–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zimmermann JA, McDevitt TC. Pre-conditioning mesenchymal stromal cell spheroids for immunomodulatory paracrine factor secretion. Cytotherapy. 2014;16(3):331–45.

    Article  CAS  PubMed  Google Scholar 

  40. Tsai A-C, Liu Y, Yuan X, Ma T. Compaction, fusion, and functional activation of three-dimensional human mesenchymal stem cell aggregate. Tissue Eng Part A. 2015;21(9–10):1705–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee EJ, Park SJ, Kang SK, Kim G-H, Kang H-J, Lee S-W, et al. Spherical bullet formation via E-cadherin promotes therapeutic potency of mesenchymal stem cells derived from human umbilical cord blood for myocardial infarction. Mol Ther. 2012;20(7):1424–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Murphy KC, Hoch AI, Harvestine JN, Zhou D, Leach JK. Mesenchymal stem cell spheroids retain osteogenic phenotype through α2β1 signaling. Stem Cells Transl Med. 2016;5(9):1229–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cesarz Z, Funnell JL, Guan J, Tamama K. Soft elasticity-associated signaling and bone morphogenic protein 2 are key regulators of mesenchymal stem cell spheroidal aggregates. Stem Cells Dev. 2016;25(8):622–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo L, Zhou Y, Wang S, Wu Y. Epigenetic changes of mesenchymal stem cells in three-dimensional (3D) spheroids. J Cell Mol Med. 2014;18(10):2009–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol. 2013;31(2):108–15.

    Article  CAS  PubMed  Google Scholar 

  46. Yin X, Mead BE, Safaee H, Langer R, Karp JM, Levy O. Engineering stem cell organoids. Cell Stem Cell. 2016;18(1):25–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li Y, Liu W, Liu F, Zeng Y, Zuo S, Feng S, et al. Primed 3D injectable microniches enabling low-dosage cell therapy for critical limb ischemia. Proc Natl Acad Sci U S A. 2014;111(37):13511–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. O'Shaughnessy TJ, Lin HJ, Ma W. Functional synapse formation among rat cortical neurons grown on three-dimensional collagen gels. Neurosci Lett. 2003;340(3):169–72.

    Article  PubMed  Google Scholar 

  49. Cullen DK, Stabenfeldt SE, Simon CM, Tate CC, LaPlaca MC. In vitro neural injury model for optimization of tissue-engineered constructs. J Neurosci Res. 2007;85(16):3642–51.

    Article  CAS  PubMed  Google Scholar 

  50. Li GN, Livi LL, Gourd CM, Deweerd ES, Hoffman-Kim D. Genomic and morphological changes of neuroblastoma cells in response to three-dimensional matrices. Tissue Eng. 2007;13(5):1035–47.

    Article  CAS  PubMed  Google Scholar 

  51. Frampton JP, Hynd MR, Shuler ML, Shain W. Fabrication and optimization of alginate hydrogel constructs for use in 3D neural cell culture. Biomed Mater. 2011;6(1):015002.

    Article  CAS  PubMed  Google Scholar 

  52. Tang-Schomer MD, White JD, Tien LW, Schmitt LI, Valentin TM, Graziano DJ, et al. Bioengineered functional brain-like cortical tissue. Proc Natl Acad Sci U S A. 2014;111(38):13811–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Paşca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods. 2015;12(7):671–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501(7467):373–9.

    Article  CAS  PubMed  Google Scholar 

  55. Kraus D, Boyle V, Leibig N, Stark GB, Penna V. The neuro-spheroid—a novel 3D in vitro model for peripheral nerve regeneration. J Neurosci Methods. 2015;246:97–105.

    Article  CAS  PubMed  Google Scholar 

  56. Dingle Y-TL, Boutin ME, Chirila AM, Livi LL, Labriola NR, Jakubek LM, et al. Three-dimensional neural spheroid culture: an in vitro model for cortical studies. Tissue Eng Part C Methods. 2015;21(12):1274–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell. 2008;3(5):519–32.

    Article  CAS  PubMed  Google Scholar 

  58. Kadoshima T, Sakaguchi H, Nakano T, Soen M, Ando S, Eiraku M, Sasai Y. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc Natl Acad Sci U S A. 2013;110(50):20284–9. http://www.pnas.org/cgi/doi/10.1073/pnas.1315710110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mariani J, Vittoria M, Palejev D, Tomasini L, Coppola G, Szekely AM, et al. Modeling human cortical development in vitro using induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2012;109(31):12770–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Danjo T, Eiraku M, Muguruma K, Watanabe K, Kawada M, Yanagawa Y, et al. Subregional specification of embryonic stem cell-derived ventral telencephalic tissues by timed and combinatory treatment with extrinsic signals. J Neurosci. 2011;31(5):1919–33.

    Article  CAS  PubMed  Google Scholar 

  61. Suga H, Kadoshima T, Minaguchi M, Ohgushi M, Soen M, Nakano T, et al. Self-formation of functional adenohypophysis in three-dimensional culture. Nature. 2011;480(7375):57–62.

    Article  CAS  PubMed  Google Scholar 

  62. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011;472(7341):51–6. http://www.nature.com/doifinder/10.1038/nature09941

    Article  CAS  PubMed  Google Scholar 

  63. Jeong GS, Chang JY, Park JS, Lee S-A, Park D, Woo J, et al. Networked neural spheroid by neuro-bundle mimicking nervous system created by topology effect. Mol Brain. 2015;8(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 2014;9(10):2329–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nasu M, Takata N, Danjo T, Sakaguchi H, Kadoshima T, Futaki S, et al. Robust formation and maintenance of continuous stratified cortical neuroepithelium by laminin-containing matrix in mouse ES cell culture. PLoS One. 2013;7(12):e53024.

    Article  CAS  Google Scholar 

  66. Koch P, Opitz T, Steinbeck JA, Ladewig J, Brustle O. A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci U S A. 2009;106(9):3225–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gaspard N, Bouschet T, Hourez R, Dimidschstein J, Naeije G, van den Ameele J, et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature. 2008;455(7211):351–7.

    Article  CAS  PubMed  Google Scholar 

  68. Camp JG, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-Bräuninger M, et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci U S A. 2015;112(51):15672–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Chang WWL, Leblond CP. Renewal of the epithelium in the descending colon of the mouse. I. Presence of three cell populations: vacuolated-columnar, mucous and argentaffin. Am J Anat. 1971;131(1):73–99.

    Article  CAS  PubMed  Google Scholar 

  70. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449(7165):1003–7.

    Article  CAS  PubMed  Google Scholar 

  71. Leblond CP, Inoue S. Structure, composition, and assembly of basement membrane. Am J Anat. 1989;185(4):367–90.

    Article  CAS  PubMed  Google Scholar 

  72. Sato T, Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science. 2013;340(6137):1190–4.

    Article  CAS  PubMed  Google Scholar 

  73. Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet. 1998;19(4):379–83.

    Article  CAS  PubMed  Google Scholar 

  74. Yin X, Farin HF, van Es JH, Clevers H, Langer R, Karp JM. Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat Methods. 2014;11(1):106–12.

    Article  CAS  PubMed  Google Scholar 

  75. Dignass AU, Sturm A. Peptide growth factors in the intestine. Eur J Gastroenterol Hepatol. 2001;13(7):763–70.

    Article  CAS  PubMed  Google Scholar 

  76. Haramis APG. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science. 2004;303(5664):1684–6.

    Article  CAS  PubMed  Google Scholar 

  77. Auclair BA, Benoit YD, Rivard N, Mishina Y, Perreault N. Bone morphogenetic protein signaling is essential for terminal differentiation of the intestinal secretory cell lineage. Gastroenterology. 2007;133(3):887–96.

    Article  CAS  PubMed  Google Scholar 

  78. Batts LE, Polk DB, Dubois RN, Kulessa H. BMP signaling is required for intestinal growth and morphogenesis. Dev Dyn. 2006;235(6):1563–70.

    Article  CAS  PubMed  Google Scholar 

  79. Crosnier C, Stamataki D, Lewis J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet. 2006;7(5):349–59.

    Article  CAS  PubMed  Google Scholar 

  80. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 2011;469(7330):415–418. doi:10.1038/nature09637.

    Google Scholar 

  81. Kim KA. Mitogenic influence of human R-Spondin1 on the intestinal epithelium. Science. 2005;309(5738):1256–9.

    Article  CAS  PubMed  Google Scholar 

  82. Evans GS, Flint N, Somers AS, Eyden B, Potten CS. The development of a method for the preparation of rat intestinal epithelial cell primary cultures. J Cell Sci. 1992;101(Pt 1):219–31.

    PubMed  Google Scholar 

  83. de Lau W, Peng WC, Gros P, Clevers H. The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength. Genes Dev. 2014;28(4):305–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Ootani A, Li X, Sangiorgi E, Ho QT, Ueno H, Toda S, et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med. 2009;15(6):701–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262–5.

    Article  CAS  PubMed  Google Scholar 

  86. Clevers H, Loh KM, Nusse R. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science. 2014;346(6205):1248012.

    Article  PubMed  CAS  Google Scholar 

  87. Pan FC, Wright C. Pancreas organogenesis: from bud to plexus to gland. Dev Dyn. 2011;240(3):530–65.

    Article  CAS  PubMed  Google Scholar 

  88. Kopp JL, Dubois CL, Schaffer AE, Hao E, Shih HP, Seymour PA, et al. Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development. 2011;138(4):653–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Solar M, Cardalda C, Houbracken I, Martín M, Maestro MA, De Medts N, et al. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell. 2009;17(6):849–60.

    Article  CAS  PubMed  Google Scholar 

  90. Furuyama K, Kawaguchi Y, Akiyama H, Horiguchi M, Kodama S, Kuhara T, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet. 2011;43(1):34–41.

    Article  CAS  PubMed  Google Scholar 

  91. Kopinke D, Brailsford M, Shea JE, Leavitt R, Scaife CL, Murtaugh LC. Lineage tracing reveals the dynamic contribution of Hes1+ cells to the developing and adult pancreas. Development. 2011;138(3):431–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Inada A, Nienaber C, Katsuta H, Fujitani Y, Levine J, Morita R, et al. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci U S A. 2008;105(50):19915–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Thorel F, Népote V, Avril I, Kohno K, Desgraz R, Chera S, et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature. 2010;464(7292):1149–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Montesano R, Mouron P, Amherdt M, Orci L. Collagen matrix promotes reorganization of pancreatic endocrine cell monolayers into islet-like organoids. J Cell Biol. 1983;97(3):935–9.

    Article  CAS  PubMed  Google Scholar 

  95. Jin L, Feng T, Shih HP, Zerda R, Luo A, Hsu J, et al. Colony-forming cells in the adult mouse pancreas are expandable in Matrigel and form endocrine/acinar colonies in laminin hydrogel. Proc Natl Acad Sci U S A. 2013;110(10):3907–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Huch M, Bonfanti P, Boj SF, Sato T, Loomans CJM, van de Wetering M, et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 2013;32(20):2708–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee J, Sugiyama T, Liu Y, Wang J, Gu X, Lei J, et al. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells. elife. 2013;2:e00940.

    PubMed  PubMed Central  Google Scholar 

  98. Greggio C, De Franceschi F, Grapin-Botton A. Concise reviews: in vitro-produced pancreas organogenesis models in three dimensions: self-organization from few stem cells or progenitors. Stem Cells. 2015;33(1):8–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Greggio C, De Franceschi F, Figueiredo-Larsen M, Gobaa S, Ranga A, Semb H, et al. Artificial three-dimensional niches deconstruct pancreas development in vitro. Development. 2013;140(21):4452–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Alipio Z, Liao W, Roemer EJ, Waner M, Fink LM, Ward DC, et al. Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells. Proc Natl Acad Sci U S A. 2010;107(30):13426–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Raikwar SP, Kim E-M, Sivitz WI, Allamargot C, Thedens DR, Zavazava N. Human iPS cell-derived insulin producing cells form vascularized organoids under the kidney capsules of diabetic mice. PLoS One. 2015;10(1):e0116582.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Chen Y-J, Finkbeiner SR, Weinblatt D, Emmett MJ, Tameire F, Yousefi M, et al. De novo formation of insulin-producing “neo-β cell islets” from intestinal crypts. Cell Rep. 2014;6(6):1046–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ariyachet C, Tovaglieri A, Xiang G, Lu J, Shah MS, Richmond CA, et al. Reprogrammed stomach tissue as a renewable source of functional β cells for blood glucose regulation. Cell Stem Cell. 2016;18(3):410–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol. 2016;18(3):246–54.

    Article  PubMed  CAS  Google Scholar 

  105. Hisha H, Tanaka T, Kanno S, Tokuyama Y, Komai Y, Ohe S, et al. Establishment of a novel lingual organoid culture system: generation of organoids having mature keratinized epithelium from adult epithelial stem cells. Sci Rep. 2013;3:3224.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  107. Maimets M, Rocchi C, Bron R, Pringle S, Kuipers J, Giepmans BNG, et al. Long-term in vitro expansion of salivary gland stem cells driven by Wnt signals. Stem Cell Rep. 2016;6(1):150–62.

    Article  CAS  Google Scholar 

  108. Huch M, Gehart H, van Boxtel R, Hamer K, Blokzijl F, Verstegen MMA, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell. 2015;160(1–2):299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hanahan D, Weinberg R. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  110. Dekkers JF, Wiegerinck CL, de Jonge HR, Bronsveld I, Janssens HM, de Winter-de Groot KM, et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med. 2013;19(7):939–45.

    Article  CAS  PubMed  Google Scholar 

  111. Nanduri LSY, Baanstra M, Faber H, Rocchi C, Zwart E, de Haan G, et al. Purification and ex vivo expansion of fully functional salivary gland stem cells. Stem Cell Rep. 2014;3(6):957–64.

    Article  CAS  Google Scholar 

  112. Zhang Y-G, Wu S, Xia Y, Sun J. Salmonella-infected crypt-derived intestinal organoid culture system for host-bacterial interactions. Physiol Rep. 2014;2(9):e12147.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wilson SS, Tocchi A, Holly MK, Parks WC, Smith JG. A small intestinal organoid model of non-invasive enteric pathogen-epithelial cell interactions. Mucosal Immunol. 2015;8(2):352–61.

    Article  CAS  PubMed  Google Scholar 

  114. Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L, et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell. 2015;162(2):375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dang J, Tiwari SK, Lichinchi G, Qin Y, Patil VS, Eroshkin AM, et al. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell. 2016;19(2):258–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nowakowski TJ, Pollen AA, Di Lullo E, Sandoval-Espinosa C, Bershteyn M, Kriegstein AR. Expression analysis highlights AXL as a candidate Zika virus entry receptor in neural stem cells. Cell Stem Cell. 2016;18(5):591–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hohwieler M, Illing A, Hermann PC, Mayer T, Stockmann M, Perkhofer L, et al. Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut. 2016;66(3):473–86.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Baker LA, Tiriac H, Clevers H, Tuveson DA. Modeling pancreatic cancer with organoids. Trends Cancer. 2016;2(4):176–90.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Baker LA, Tiriac H, Corbo V, Boj SF, Hwang C. Abstract B16: using human patient-derived organoids to identify genetic dependencies in pancreatic cancer. Association for Cancer. 2016.

    Google Scholar 

  120. Boj SF, Hwang C-I, Baker LA, Chio IIC, Engle DD, Corbo V, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160(1–2):324–38.

    Article  CAS  PubMed  Google Scholar 

  121. Huang L, Holtzinger A, Jagan I, BeGora M, Lohse I, Ngai N, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med. 2015;21(11):1364–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ. 2003;22(2):151–85.

    Article  PubMed  Google Scholar 

  123. Adams CP, Brantner VV. Estimating the cost of new drug development: is it really 802 million dollars? Health Aff (Millwood). 2006;25(2):420–8.

    Article  Google Scholar 

  124. Morizane R, Lam AQ, Freedman BS, Kishi S, Valerius MT, Bonventre JV. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol. 2015;33(11):1193–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xinaris C, Benedetti V, Rizzo P, Abbate M, Corna D, Azzollini N, et al. In vivo maturation of functional renal organoids formed from embryonic cell suspensions. J Am Soc Nephrol. 2012;23(11):1857–68.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32(8):760–72.

    Article  CAS  PubMed  Google Scholar 

  127. Ingber DE. Reverse engineering human pathophysiology with organs-on-chips. Cell. 2016;164(6):1105–9.

    Article  CAS  PubMed  Google Scholar 

  128. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010;328(5986):1662–8.

    Article  CAS  PubMed  Google Scholar 

  129. Jang K-J, Mehr AP, Hamilton GA, McPartlin LA, Chung S, Suh K-Y, et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol. 2013;5(9):1119–2.

    Article  CAS  Google Scholar 

  130. Toh Y-C, Lim TC, Tai D, Xiao G, van Noort D, Yu H. A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip. 2009;9(14):2026–10.

    Article  CAS  PubMed  Google Scholar 

  131. Esch MB, Mahler GJ, Stokol T, Shuler ML. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab Chip. 2014;14(16):3081–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kim HJ, Li H, Collins JJ, Ingber DE. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci U S A. 2016;113(1):E7–E15.

    Article  CAS  PubMed  Google Scholar 

  133. Zhang YS, Arneri A, Bersini S, Shin S-R, Zhu K, Goli-Malekabadi Z, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110(c):45–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Viravaidya K, Shuler ML. Incorporation of 3T3-L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies. Biotechnol Prog. 2004;20(2):590–7.

    Article  CAS  PubMed  Google Scholar 

  135. Torisawa Y-S, Spina CS, Mammoto T, Mammoto A, Weaver JC, Tat T, et al. Bone marrow–on–a–chip replicates hematopoietic niche physiology in vitro. Nat Methods. 2014;11(6):663–9.

    Article  CAS  PubMed  Google Scholar 

  136. Jain A, Meer AD, Papa A-L, Barrile R, Lai A, Schlechter BL, et al. Assessment of whole blood thrombosis in a microfluidic device lined by fixed human endothelium. Biomed Microdevices. 2016;18(4):73.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Griep LM, Wolbers F, de Wagenaar B, Braak ter PM, Weksler BB, Romero IA, et al. BBB ON CHIP: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed Microdevices. 2012;15(1):145–50.

    Article  CAS  Google Scholar 

  138. Portillo-Lara R, Annabi N. Microengineered cancer-on-a-chip platforms to study the metastatic microenvironment. Lab Chip. 2016;16:4063–81.

    Article  CAS  PubMed  Google Scholar 

  139. Zhou M, Ma H, Lin H, Qin J. Induction of epithelial-to-mesenchymal transition in proximal tubular epithelial cells on microfluidic devices. Biomaterials. 2014;35(5):1390–401.

    Article  CAS  PubMed  Google Scholar 

  140. Li CY, Stevens KR, Schwartz RE, Alejandro BS, Huang JH, Bhatia SN. Micropatterned cell-cell interactions enable functional encapsulation of primary hepatocytes in hydrogel microtissues. Tissue Eng Part A. 2014;20(15–16):2200–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kim HJ, Ingber DE. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol. 2013;5(9):1130–40.

    Article  CAS  Google Scholar 

  142. Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12(12):2165–74.

    Article  CAS  PubMed  Google Scholar 

  143. Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA, et al. A human disease model of drug toxicity–induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med. 2012;4(159):159ra147.

    Article  PubMed  CAS  Google Scholar 

  144. Takayama S, Ostuni E, Qian X. Topographical micropatterning of poly (dimethylsiloxane) using laminar flows of liquids in capillaries. Adv Mater. 2001;13(8):570–4.

    Article  CAS  Google Scholar 

  145. Folch A, Ayon A, Hurtado O, Schmidt MA, Toner M. Molding of deep polydimethylsiloxane microstructures for microfluidics and biological applications. J Biomech Eng. 1999;121(1):28–34.

    Article  CAS  PubMed  Google Scholar 

  146. Lind JU, Busbee TA, Valentine AD, Pasqualini FS, Yuan H, Yadid M, et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat Mater. 2016;16(3):303–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Fan J, de Lannoy IAM. Pharmacokinetics. Biochem Pharmacol. 2014;87(1):93–120.

    Article  CAS  PubMed  Google Scholar 

  148. Esch MB, King TL, Shuler ML. The role of body-on-a-chip devices in drug and toxicity studies. Annu Rev Biomed Eng. 2011;13(1):55–72.

    Article  CAS  PubMed  Google Scholar 

  149. Maschmeyer I, Lorenz AK, Schimek K, Hasenberg T, Ramme AP, Hübner J, et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip. 2015;15:2688–99.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Ankrum Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ankrum, J.A., Bartosh, T.J., Yin, X., J. Brown, A., Burand, A.J., Boland, L. (2017). Engineering Organoid Systems to Model Health and Disease. In: Emerich, D., Orive, G. (eds) Cell Therapy. Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-57153-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57153-9_10

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-57152-2

  • Online ISBN: 978-3-319-57153-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics