Improving Algorithmic Optimisation Method by Spectral Clustering

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 575)


In this paper, a spectral algorithm for effort estimation is evaluated. As effort prediction method the Algorithmic Optimisation Method is employed. Spectral clustering is used in version of normalized Laplacian matrix and k-means algorithm is used for clustering eigenvectors. Results shows that clustering lowers a Mean Absolute Percentage Error by 6% and Sum of Squared Errors/Residuals is decreased by 43,5%. Difference in mean value of residuals is statically significant (p = 0.0041, at 0.05 level).


Effort estimation Clustering Use case points Algorithmic optimisation method 


  1. 1.
    Silhavy, R., Silhavy, P., Prokopova, Z.: Algorithmic optimisation method for improving use case points estimation. PLoS ONE 10, e0141887 (2015)CrossRefGoogle Scholar
  2. 2.
    Karner, G.: Metrics for objectory. Diploma, University of Linkoping, Sweden, No. LiTH-IDA-Ex-9344, vol. 21, December 1993Google Scholar
  3. 3.
    Ochodek, M., Alchimowicz, B., Jurkiewicz, J., Nawrocki, J.: Improving the reliability of transaction identification in use cases. Inf. Softw. Technol. 53, 885–897 (2011)CrossRefGoogle Scholar
  4. 4.
    Ochodek, M., Nawrocki, J., Kwarciak, K.: Simplifying effort estimation based on Use Case Points. Inf. Softw. Technol. 53, 200–213 (2011)CrossRefGoogle Scholar
  5. 5.
    Anandhi, V., Chezian, R.M.: Regression techniques in software effort estimation using cocomo dataset. In: 2014 International Conference on Intelligent Computing Applications (ICICA 2014), pp. 353–357 (2014)Google Scholar
  6. 6.
    Jorgensen, M.: Regression models of software development effort estimation accuracy and bias. Empirical Softw. Eng. 9, 297–314 (2004)CrossRefGoogle Scholar
  7. 7.
    Nassif, A.B., Ho, D., Capretz, L.F.: Towards an early software estimation using log-linear regression and a multilayer perceptron model. J. Syst. Softw. 86, 144–160 (2013)CrossRefGoogle Scholar
  8. 8.
    Urbanek, T., Prokopova, Z., Silhavy, R., Vesela, V.: Prediction accuracy measurements as a fitness function for software effort estimation. Springerplus 4, 17 (2015)CrossRefGoogle Scholar
  9. 9.
    Azzeh, M., Nassif, A.B.: Analogy-based effort estimation: a new method to discover set of analogies from dataset characteristics. IET Softw. 9, 39–50 (2015)CrossRefGoogle Scholar
  10. 10.
    Azzeh, M., Nassif, A.B.: A hybrid model for estimating software project effort from Use Case Points. Appl. Soft Comput. 49, 981–989 (2016)CrossRefGoogle Scholar
  11. 11.
    Bardsiri, V.K., Jawawi, D.N.A., Hashim, S.Z.M., Khatibi, E.: Increasing the accuracy of software development effort estimation using projects clustering. IET Softw. 6, 461–473 (2012)CrossRefGoogle Scholar
  12. 12.
    Bardsiri, V.K., Jawawi, D.N.A., Hashim, S.Z.M., Khatibi, E.: A flexible method to estimate the software development effort based on the classification of projects and localization of comparisons. Empirical Softw. Eng. 19, 857–884 (2014)CrossRefGoogle Scholar
  13. 13.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: 1995 IEEE International Conference on Neural Networks Proceedings, vol. 1–6, pp. 1942–1948 (1995)Google Scholar
  14. 14.
    Hihn, J., Juster, L., Johnson, J., Menzies, T., Michael, G.: Improving and expanding NASA software cost estimation methods. In: IEEE Aerospace Conference 2016, pp. 1–12 (2016)Google Scholar
  15. 15.
    Silhavy, R., Silhavy, P., Prokopova, Z.: Analysis and selection of a regression model for the Use Case Points method using a stepwise approach. J. Syst. Softw. 125, 1–14 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations