Experimental and Simulative Modeling of Drilling Processes for the Compensation of Thermal Effects

  • P. Bollig
  • J. Michna
  • C. Faltin
  • J. Schneider
  • F. Zanger
  • R. Schießl
  • U. Maas
  • V. Schulze
Chapter
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

This work focuses on the prediction of phase transformations and shape deviations for drilling of demonstrator workpieces. In a first step, a 2D chip formation simulation was developed with all physical effects. Based on this simulation a simplified workpiece geometry with only one drilling hole was 3D modeled and tested for its predictive capability of phase transformations and shape deviations. Therefore, the feed rate, the rotation of the drilling tool and the material removal were considered for the process kinematics. Using these results the modeling approach was optimized and transferred into a simulation model with a demonstrator workpiece to minimize shape deviations and control phase transformations using different compensation strategies. The simulations were validated by experiments.

Notes

Acknowledgements

The authors gratefully thank the “Deutsche Forschungsgemeinschaft DFG” for the support of the priority program 1480 “Modelling, Simulation and Compensation of Thermal Effects for Complex Machining Processes”.

References

  1. 1.
    Al Jourdi, A.: Adaption des Trockenbohrens über thermomechanische Modellierung zur Erhöhung der Fertigungsgenauigkeit. Dissertation, Technische Universität Berlin (2012)Google Scholar
  2. 2.
    Autentieth H.: Numerische Analyse der Mikrozerspanung am Beispiel von normalisiertem C45E. Dissertation, Universität Karlsruhe (TH) (2010)Google Scholar
  3. 3.
    Bartek, T., Menzel, A.: A finite deformation framework for martensitic phase transformations interacting with plasticity based on representative deformation directions. submitted for publicationGoogle Scholar
  4. 4.
    Bollig, P., Köhler, D., Zanger, F., Schulze, V.: Effects of different levels of abstraction simulating heat sources in FEM considering drilling. Procedia CIRP 46, 115–118 (2016)CrossRefGoogle Scholar
  5. 5.
    Bollig, P., Faltin, C., Schießl, R., Schneider, J., Maas, U., Schulze, V.: Considering the influence of minimum quantity lubrication for modelling changes in temperature, forces and phase transformations during machining. Procedia CIRP 31, 142–147 (2015)CrossRefGoogle Scholar
  6. 6.
    Galanis, N.I., Manolakos, D.E., Vaxevanidis, N.M.: Comparison between dry and wet machining of stainless steel. In: Proceedings of the 3rd International Conference on Manufacturing Engineering, pp. 91–98 (2008)Google Scholar
  7. 7.
    Gulpak, M., Sölter, J.: Development and validation of a hybrid model for the prediction of shape deviations in dry machining processes. Procedia CIRP 31, 346–351 (2015)CrossRefGoogle Scholar
  8. 8.
    Maas, U.: Detailed numerical simulation of chemically reacting flows. In: Proceedings of the International Symposium on Computational Fluid Dynamics p. 741 (1991)Google Scholar
  9. 9.
    Michna, J.: Numerische und experimentelle Untersuchung zerspanungsbedingter Gefügeumwandlungen und Modellierung des thermo-mechanischen Lastkollektivs beim Bohren von 42CrMo4. Dissertation, Karlsruher Institut für Technologie (KIT) (2014)Google Scholar
  10. 10.
    Mioković, T.: Analyse des Umwandlungsverhaltens bei ein-und mehrfacher Kurzheithärtung bzw, Läserstrahlhärtung des Stahls 42CrMo4. Dissertation, Universität Karlsruhe (TH), (2005)Google Scholar
  11. 11.
    Pabst, R.: Mathematische Modellierung der Wärmestromdichte zur Simulation des thermischen Bauteilverhaltens bei der Trockenbearbeitung Dissertation, Karlsruher Institut für Technologie (KIT), (2008)Google Scholar
  12. 12.
    Schulze, V., Zanger, F.: Numerical analysis of the influence of Johnson-Cook material parameters on the surface integrity of Ti-6A-4V. Procedia Eng. 19, 306–311 (2011)CrossRefGoogle Scholar
  13. 13.
    Schulze, V., Michna, J., Schneider, J., Gumbsch, P.: Modelling of cutting induced surface phase transformations considering friction effects. Procedia Eng. 19, 331–336 (2011)CrossRefGoogle Scholar
  14. 14.
    Schulze, V., Michna, J., Zanger, F., Pabst, R.: Modeling the process-induced modifications of the microstructure of workpiece surface zones in cutting processes. Adv. Mater. Res. 223, 371–380 (2011)CrossRefGoogle Scholar
  15. 15.
    Schulze, V., Zanger, F., Michna, J., Lang, F.: 3D-FE-Modelling of the drilling process—prediction of phase transformations at the surface layer. Procedia CIRP 8, 233–238 (2013)Google Scholar
  16. 16.
    Schulze, V., Michna, J., Zanger, F., Faltin, C., Maas, U., Schneider, J.: Influence of cutting parameters, tool coatings and friction on the process heat in cutting processes and phase transformations in workpiece surface layers. J. Heat Treat. Mater. 68, 22–31 (2013)CrossRefGoogle Scholar
  17. 17.
    Schulze, V., Uhlmann, E., Mahnken, R., Menzel, A., Biermann, B., Zabel, A., Bollig, P., Ivanov, I.M., Cheng, C., Holtermann, R., Bartel, T.: Evaluation of different approaches for modeling phase transformations in machining simulation. Prod. Eng. Res. Devel. 9(4), 437–449 (2015)CrossRefGoogle Scholar
  18. 18.
    Schüttenberg, S., Hunkel, M., Fritsching, U., Zoch, H.-W: Controlled quenching of steel parts in fluid jet fields. In: 15th IFHTSE and SMT 20, pp. 25–29 (2006)Google Scholar
  19. 19.
    Tomé, C.N., Canova, G.R., Kocks, U.F., Christodoulou, N., Jonas, J.: The relationship between macroscopic and microscopic strain hardening in F.C.C. polycrystals. Acta Metall. 32(10), 1637–1653 (1984)CrossRefGoogle Scholar
  20. 20.
    Uhlmann, E., Mahnken, R., Ivanov, I.M., Cheng, C.: FEM modeling of hard turning with consideration of viscoplastic asymmetry and phase transformation. J. Mach. Eng. 13(1), 80–92 (2013)Google Scholar
  21. 21.
    Voce, E.: The relationship between stress and strain for homogeneous deformation. J. Inst. Met 74, 537–562 (1948)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • P. Bollig
    • 1
  • J. Michna
    • 1
  • C. Faltin
    • 2
  • J. Schneider
    • 3
  • F. Zanger
    • 1
  • R. Schießl
    • 2
  • U. Maas
    • 2
  • V. Schulze
    • 1
  1. 1.Institute of Production Science, Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Institute of Technical Thermodynamics, Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Institute for Applied Materials – Computational Materials Science, Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations