Modelling and Compensation of Thermoelastic Workpiece Deformation in Dry Cutting

  • F. Klocke
  • R. Kneer
  • M. Burghold
  • M. Deppermann
  • B. Peng
  • H. Puls
Chapter
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

Dry cutting ranks among the most significant developments within manufacturing technology. Compared to wet cutting, a major problem of dry machining is a stronger heat generation and thus, workpiece warming. This leads to thermoelastic workpiece deformation. Therefore, within this work a model is developed to predict and compensate the thermoelastic workpiece deformation. At first, friction behavior and heat transfer at the tool-chip interface in the orthogonal cutting process are experimentally investigated. Based on the fundamental investigations, a multiscale model for the dry turning process is developed. It contains two submodels, a mesoscopic FE-model for the chip formation and a macroscopic FE-model for the turning process. To validate the mesoscopic FE-model, experiments of orthogonal turning are performed and the temperature fields are measured. Hereby, the occurring heat flow into the workpiece is calculated by solving the inverse heat conduction problem. The macroscopic FE-model calculates the thermoelastic workpiece deformation based on heat inputs of the mesoscopic model. By means of the developed approach, minimization and compensation strategies are developed, applied and evaluated based on complex processing examples.

Notes

Acknowledgements

The authors would like to thank the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) for the funding of the depicted research within the priority programme 1480 (SPP 1480).

References

  1. 1.
    Weinert, K., Inasaki, I., Sutherland, J.W., Wakabayashi, T.: Dry machining and minimum quantity lubrication. CIRP Ann. Manuf. Technol. 53(2), 511–537 (2004)CrossRefGoogle Scholar
  2. 2.
    Dyck, M.: Beitrag zur analyse thermisch bedingter werkstückdeformationen in trockenbearbeitungsprozessen. Dissertation, Universität Karlsruhe (2007)Google Scholar
  3. 3.
    Eisenblätter, G.: Spanende Fertigung. Hrsg.: K. Weinert, 4. Auflage, Vulkan Verlag, chap Ganzheitlicher Ansatz zur Gestaltung der Trockenbearbeitung-Erfahrungen bei der Bearbeitung von Bauteilen aus Grauguss und Aluminium (2005)Google Scholar
  4. 4.
    Zielasko, W., Schirsch, R.: Trockenbearbeitung in der großserienfertigung. Werkstatttechnik 90(6), 259–260 (2000)Google Scholar
  5. 5.
    Arrazola, P.J., Özel, T., Umbrello, D., Davies, M., Jawahir, I.S.: Recent advances in modelling of metal machining processes. CIRP Ann. Manuf. Technol. 62(2), 695–718 (2013)CrossRefGoogle Scholar
  6. 6.
    Pabst, R., Fleischer, J., Michna, J.: Modelling of the heat input for face-milling processes. CIRP Ann. Manuf. Technol. 59(1), 121–124 (2010)CrossRefGoogle Scholar
  7. 7.
    Abukhshim, N.A., Mativenga, P.T., Sheikh, M.A.: Investigation of heat partition in high speed turning of high strength alloy steel. Int. J. Mach. Tools Manuf. 45(15), 1687–1695 (2005)CrossRefGoogle Scholar
  8. 8.
    Sölter, J., Gulpak, M.: Heat partitioning in dry milling of steel. CIRP Ann. Manuf. Technol. 61(1), 87–90 (2012)CrossRefGoogle Scholar
  9. 9.
    Vollmer, M., Möllmann, K.P.: Infrared Thermal Imaging: Fundamentals, Research and Applications. Wiley (2010)Google Scholar
  10. 10.
    Hoppe, S.: Experimental and numerical analysis of chip formation in metal cutting. Dissertation, RWTH Aachen (2003)Google Scholar
  11. 11.
    Shi, B., Attia, H.: Current status and future direction in the numerical modeling and simulation of machining processes: a critical literature review. Mach. Sci. Technol. Int. J. 14(2), 149–188 (2010)CrossRefGoogle Scholar
  12. 12.
    Puls, H., Klocke, F., Lung, D.: Experimental investigation on friction under metal cutting conditions. Wear 310(1–2), 63–71 (2014)CrossRefGoogle Scholar
  13. 13.
    Müller, B., Renz, U.: Development of a fast fiber-optic two-color pyrometer for the temperature measurement of surfaces with varying emissivities. Rev. Sci. Instrum. 72(8), 3366 (2001)CrossRefGoogle Scholar
  14. 14.
    Puls, H., Klocke, F., Veselovac, D.: Fem-based prediction of heat partition in dry metal cutting of aisi 1045. Int. J. Adv. Manuf. Technol. 86(1), 737–745 (2015)Google Scholar
  15. 15.
    Brookes, K.J.A.: World Directory and Handbook of Hardmetals and Hard Materials, 6th edn. International Carbide Data, East Barnet, Herts, U.K. (1996)Google Scholar
  16. 16.
    Arrazola, P.J., Ugarte, D., Domínguez, X.: A new approach for the friction identification during machining through the use of finite element modeling. Int. J. Mach. Tools Manuf. 48(2), 173–183 (2008)CrossRefGoogle Scholar
  17. 17.
    Rech, J., Arrazola, P.J., Claudin, C., Courbon, C., Pusavec, F., Kopac, J.: Characterisation of friction and heat partition coefficients at the tool-work material interface in cutting. CIRP Ann. Manuf. Technol. 62(1), 79–82 (2013)CrossRefGoogle Scholar
  18. 18.
    Burghold, E., Frekers, Y., Kneer, R.: Determination of time-dependent thermal contact conductance through IR-thermography. Int. J. Therm. Sci. 98, 148–155 (2015)CrossRefGoogle Scholar
  19. 19.
    Fieberg, C., Kneer, R.: Determination of thermal contact resistance from transient temperature measurements. Int. J. Heat Mass Transf. 51(5–6), 1017–1023 (2008)CrossRefMATHGoogle Scholar
  20. 20.
    Ustinov, V., Al-Sibai, F., Kneer, R., Schulz, S., El-Magd, E.: Influence of surface roughness on contact heat transfer. In: 14th International Heat Transfer Conference, vol. 3, pp. 305–312 (2010)Google Scholar
  21. 21.
    Bergles, A.E., Mayinger, F. (eds.): Inverse Heat Transfer Problems. Springer, New York (1994)Google Scholar
  22. 22.
    Mesnyankin, S., Vikulov, A., Vikulov, D.: Solid-solid thermal contact problems: current understanding. Phys. Usp. 52(9), 891–914 (2009)CrossRefGoogle Scholar
  23. 23.
    Klocke, F., Lung, D., Buchkremer, S.: Inverse identification of the constitutive equation of inconel 718 and aisi 1045 from fe machining simulations. Procedia CIRP 8, 212–217 (2013)CrossRefGoogle Scholar
  24. 24.
    Spittel, M., Spittel, T.: Steel symbol/number: C45/1.0503. In: Warlimont, H. (ed.) Metal Forming Data—Ferrous Alloys—Deformation Behaviour: SpringerMaterials—The Landolt-Börnstein Database, Landolt-Börnstein—Group VIII Advanced Materials and Technologies. Springer, Berlin (2009)Google Scholar
  25. 25.
    Beiss, P., Ruthardt, R., Warlimont, H. (eds.): Powder metallurgy data. In: Refractory, Hard and Intermetallic Materials. Landolt-Börnstein—Group VIII Advanced Materials and Technologies. Springer, Berlin (2002)Google Scholar
  26. 26.
    Martan, J., Beneš, P.: Thermal properties of cutting tool coatings at high temperatures. Thermochim. Acta 539, 51–55 (2012)CrossRefGoogle Scholar
  27. 27.
    Puls, H.: Coupled Eulerian-Lagrangian modelling of high speed metal cutting processes. In: Advances in Manufacturing Technology: 11th International Conference High Speed Machining, Prague (2014)Google Scholar
  28. 28.
    Puls, H.: Mehrskalenmodellierung thermo-elastischer werkstückdeformationen beim trockendrehen. Dissertation, RWTH Aachen University (2015)Google Scholar
  29. 29.
    Deppermann, M., Puls, H., Burghold, M.E., Kneer, R., Klocke, F.: Experimental investigation of the work piece temperatures in dry orthogonal metal turning. In: Proceedings of the 15th International Heat Transfer Conference, Begell House, Kyoto, Japan, no. 9223 in IHTC15 (2014)Google Scholar
  30. 30.
    Maillet, D.: Experimental inverse problems: potentials and limitations. In: Proceedings of the 15th International Heat Transfer Conference, Begell House, Kyoto, Japan, no. KN10 in IHTC15 (2014)Google Scholar
  31. 31.
    Beck, J.V., Blackwell, B., Clair, C.R.S.: Inverse Heat Conduction. Wiley, New York (1985)MATHGoogle Scholar
  32. 32.
    Deppermann, M., Kneer, R.: Determination of the heat flux to the workpiece during dry turning by inverse methods. Prod. Eng. Res. Dev. 1(9), 465–471 (2015)CrossRefGoogle Scholar
  33. 33.
    Brinksmeier, E., Brockhoff, T.: Utilization of grinding heat as a new heat treatment process. CIRP Ann. Manuf. Technol. 45(1), 283–286 (1996)CrossRefGoogle Scholar
  34. 34.
    VDI eV: VDI-Wärmeatlas, 11th edn. Springer, Berlin, Heidelberg, Wiesbaden (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • F. Klocke
    • 1
  • R. Kneer
    • 2
  • M. Burghold
    • 2
  • M. Deppermann
    • 2
  • B. Peng
    • 1
  • H. Puls
    • 1
  1. 1.Laboratory for Machine Tools and Production EngineeringRWTH Aachen UniversityAachenGermany
  2. 2.Institute of Heat and Mass Transfer, RWTH Aachen UniversityAachenGermany

Personalised recommendations