Advertisement

Improvement of the Machining Accuracy in Dry Turning of Aluminum Metal Matrix Composites via Experiments and Finite Element Simulations

  • M. Zimmermann
  • S. Schindler
  • J. C. Aurich
  • P. Steinmann
Chapter
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

This chapter presents experimental investigations and a numerical approach for the achievement of a better machining accuracy when dry turning aluminum metal matrix composites (Al-MMCs) and aluminum alloys. Three differently reinforced Al-MMCs regarding the volume percentage (17 and 30%) and the average particle size (0.6 and \(3\, \mu \mathrm {m}\)) were considered. Experimentally validated finite element (FE) models were developed to determine cutting conditions, which reduce the thermal load of the workpiece and the tool. Three approaches were investigated for the determination of the heat flow into the workpiece and the tool: a local FE model of chip formation, an experimental approach, and a fitting algorithm. Global FE models of the workpiece and the tool use this thermal boundary condition in order to calculate the temperature evolution and the thermal expansion. Moreover, a computer-aided design/computer-aided manufacturing (CAD-CAM) approach for the compensation of the workpiece and the tool deformations via an accordingly adapted depth of cut is outlined. As a result of the decreased thermal load on the workpiece and tool in combination with the compensation of the deformations, a significant increase of the machining accuracy was observed.

Notes

Acknowledgements

The authors would like to thank the German research foundation (DFG) for funding the project “Thermal effects when turning Al-MMC—experiments and simulations AU 185/26, STE 544/42” within the priority program SPP 1480.

References

  1. 1.
    Asad, M., Girardin, F., Mabrouki, T., Rigal, J.F.: Dry cutting study of an aluminium alloy (A2024–T351): a numerical and experimental approach. Int. J. Mater. Form. 1, 499–502 (2008)CrossRefGoogle Scholar
  2. 2.
    Aurich, J.C., Zimmermann, M., Schindler, S., Steinmann, P.: Analysis of the machining accuracy when dry turning via experiments and finite element simulations. Prod. Eng. Res. Dev. 8(1–2), 41–50 (2014)CrossRefGoogle Scholar
  3. 3.
    Aurich, J.C., Zimmermann, M., Schindler, S., Steinmann, P.: Effect of the cutting condition and the reinforcement phase on the thermal load of the workpiece when dry turning aluminum metal matrix composites. Int. J. Adv. Manuf. Technol. 82(5), 1317–1334 (2016)Google Scholar
  4. 4.
    Aurich, J.C., Zimmermann, M., Schindler, S., Steinmann, P.: Turning of aluminum metal matrix composites: Influence of the reinforcement and the cutting condition on the surface layer of the workpiece. Adv. Manuf. 4(3), 225–236 (2016)Google Scholar
  5. 5.
    Aurich, J.C., Zimmermann, M., Steinmann, P., Schindler, S.: Fertigungsgenauigkeit beim Drehen steigern - Einfluss der Prozessparameter auf die Maßhaltigkeit bei der Trockenbearbeitung. VDI-Z Integrierte Produktion 157(4), 42–45 (2015)Google Scholar
  6. 6.
    Brammer, J.A., Percival, C.M.: Elevated-temperature elastic moduli of 2024 aluminum obtained by a laser-pulse technique. Exp. Mech. 10(6), 245–250 (1970)CrossRefGoogle Scholar
  7. 7.
    Denkena, B., Tönshof, H.K.: Spanen - Grundlagen. Springer, Heidelberg (2011)Google Scholar
  8. 8.
    Hodowany, J., Ravichandran, G., Rosakis, A., Rosakis, P.: Partition of plastic work into heat and stored energy in metals. Exp. Mech. 40(2), 113–123 (2000)CrossRefMATHGoogle Scholar
  9. 9.
    Leichtfried, G., Sauthoff, G., Spriggs, G.: Refractory, hard and intermetallic materials. In: Advanced Materials and Technologies. Springer, Berlin (2002)Google Scholar
  10. 10.
    Moriwaki, T., Horiuchi, A., Okuda, K.: Effect of cutting heat on machining accuracy in ultra-precision diamond turning. CIRP Ann. Manuf. Technol. 39(1), 81–84 (1990)CrossRefGoogle Scholar
  11. 11.
    Puls, H.: Mehrskalenmodellierung thermo-elastischer Werkstückdeformationen beim Trockendrehen. Dissertation, RWTH Aachen, Aachen (2015)Google Scholar
  12. 12.
    Schindler, S., Mergheim, J., Zimmermann, M., Aurich, J.C., Steinmann, P.: Numerical homogenization of elastic and thermal material properties for metal matrix composites (mmc). Continuum Mech. Thermodyn. 29(1), 51–75 (2017)Google Scholar
  13. 13.
    Schindler, S., Steinmann, P., Aurich, J.C., Zimmermann, M.: A thermo-viscoplastic constitutive law for isotropic hardening of metals. Arch. Appl. Mech. 87(1), 129–157 (2017)Google Scholar
  14. 14.
    Schindler, S., Zimmermann, M., Aurich, J.C., Steinmann, P.: Modeling deformations of the workpiece and removal of material when turning. Procedia CIRP 8, 39–44 (2013)Google Scholar
  15. 15.
    Schindler, S., Zimmermann, M., Aurich, J.C., Steinmann, P.: Finite element model to calculate the thermal expansion of the tool and the workpiece in dry turning. Procedia CIRP 14, 535–540 (2014)CrossRefGoogle Scholar
  16. 16.
    Schindler, S., Zimmermann, M., Aurich, J.C., Steinmann, P.: Thermo-elastic deformations of the workpiece when dry turning aluminum alloys—a finite element model to predict thermal effects in the workpiece. CIRP J. Manuf. Sci. Technol. 7(3), 233–245 (2014)Google Scholar
  17. 17.
    Schindler, S., Zimmermann, M., Aurich, J.C., Steinmann, P.: Identification of thermal effects on the diameter deviation of inhomogeneous aluminum metal matrix composite workpieces when dry turning. Prod. Eng. 9(4), 473–485 (2015)Google Scholar
  18. 18.
    Schulze, V., Zanger, F., Boev, N., Michna, J., Maas, U., Faltin, C., Schneider, J., Bollig, P.: FE-simulation of machining induced phase transformations considering friction as a function of temperature and sliding speed and detailed modeling of the heat transport. Adv. Eng. Mater. 16(2), 137–141 (2014)Google Scholar
  19. 19.
    Spittel, M., Spittel, T.: Metal forming data—ferrousalloys. In: Advanced Materials and Technologies. Springer, Berlin (2002)Google Scholar
  20. 20.
    Tomac, N., Tannessen, K., Rasch, F.: Machinability of particulate aluminium matrix composites. CIRP Ann. Manuf. Technol. 41(1), 55–58 (1992)CrossRefGoogle Scholar
  21. 21.
    Zhao, N., Yang, Y.Q., Han, M., Luo, X., Feng, G.H., Zhang, R.J.: Finite element analysis of pressure on 2024 aluminum alloy created during restricting expansion-deformation heat-treatment. Trans. Nonferrous Met. Soc. China 22, 2226–2232 (2012)Google Scholar
  22. 22.
    Zhou, L., Wang, Y., Ma, Z., Yu, X.: Finite element and experimental studies of the formation mechanism of edge defects during machining of SiCp/Al composites. Int. J. Mach. Tool Manuf. 84, 9–16 (2014)Google Scholar
  23. 23.
    Zimmermann, M.: Drehen von Aluminium-Matrix-Verbundwerkstoffen - Analyse thermischer und mechanischer Einflüsse auf die Fertigungsgenauigkeit bei der Trockenbearbeitung. Dissertation, TU Kaiserslautern, Kaiserslautern (2015)Google Scholar
  24. 24.
    Zimmermann, M., Schindler, S., Steinmann, P., Aurich, J.C.: Drehen metallischer Verbundwerkstoffe - Einfluss von Prozessparametern und Verstärkungsphase auf die Fertigungsgenauigkeit. wt Werkstattstechnik online 104(1–2), 33–39 (2014)Google Scholar
  25. 25.
    Zimmermann, M., Schindler, S., Steinmann, P., Aurich, J.C.: Compensation of thermo-mechanically induced workpiece and tool deformations during dry turning. Procedia CIRP 46, 31–34 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • M. Zimmermann
    • 1
  • S. Schindler
    • 2
  • J. C. Aurich
    • 1
  • P. Steinmann
    • 2
  1. 1.Institute for Manufacturing Technology and Production SystemsUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Chair of Applied MechanicsFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations