Advertisement

Optimization and Compensation Strategies

Chapter
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

The contributions from Priority Program 1480 describe and analyze various applications of machining processes and model the specific influences of process-induced thermal effects. In order to control the resulting deformation and shape errors, specialized compensation and optimization approaches are described. Even though the approaches vary a lot due to the different specialized processes, some general common ideas and concepts can be identified.

Notes

Acknowledgements

This contribution is based on research projects within the DFG Priority Program 1480 “Modeling, Simulation and Compensation of Thermal Effects for Complex Machining Processes”. The authors thank the German Research Foundation (DFG) for financial and organizational support.

References

  1. 1.
    Aurich, J.C., Zimmermann, M., Schindler, S., Steinmann, P.: Improvement of the machining accuracy in dry turning of aluminum metal matrix composites via experiments and finite element simulations. In: Biermann, D., Hollmann, F. (eds.) Thermal Effects in Complex Machining Processes, Lecture Notes in Production Engineering, pp 35–62. Springer (2017)Google Scholar
  2. 2.
    Beutner, M., Kadashevich, I., Karpuschewski, B., Halle, T.: Modeling, simulation and compensation of thermal effects in gear hobbing. In: Biermann, D., Hollmann, F. (eds.) Thermal Effects in Complex Machining Processes, Lecture Notes in Production Engineering, pp 181–218. Springer (2017)Google Scholar
  3. 3.
    Biermann, D., Blum, H., Iovkov, I., Rademacher, A., Rosin, K., Suttmeier, F.-T.: Modelling, simulation and compensation of thermomechanically induced deviations in deep-hole drilling with minimum quantity lubrication. In: Biermann, D., Hollmann, F. (eds.) Thermal Effects in Complex Machining Processes, Lecture Notes in Production Engineering, pp 181–218. Springer (2017)Google Scholar
  4. 4.
    Bollig, P., Michna, J., Faltin, C., Schneider, J., Zanger, F., Schießl, R., Maas, U., Schulze, V.: Experimental and simulative modeling of drilling processes for the compensation of thermal effects. In: Biermann, D., Hollmann, F. (eds.) Thermal Effects in Complex Machining Processes, Lecture Notes in Production Engineering, pp 145–180. Springer (2017)Google Scholar
  5. 5.
    Denkena, B., Maaß, P., Schmidt, A., Niederwestberg, D., Vehmeyer, J., Niebuhr, C., Gralla, P.: Thermomechanical deformation of complex workpieces in milling and drilling processes. In: Biermann, D., Hollmann, F. (eds.) Thermal Effects in Complex Machining Processes, Lecture Notes in Production Engineering, pp 219–250. Springer (2017)Google Scholar
  6. 6.
    Gulpak, M., Wernsing, H., Sölter, J., Büskens, C.: Compensation strategies for thermal effects in dry milling. In: Biermann, D., Hollmann, F. (eds.) Thermal Effects in Complex Machining Processes, Lecture Notes in Production Engineering, pp 251–288. Springer (2017)Google Scholar
  7. 7.
    Holtermann, R., Schumann, S., Menzel, A., Biermann, D.: Modelling and simulation of internal traverse grinding from micro-thermo-mechanical mechanisms to process models. In: Biermann, D., Hollmann, F. (eds.) Thermal Effects in Complex Machining Processes, Lecture Notes in Production Engineering, pp 369–403. Springer (2017)Google Scholar
  8. 8.
    Klocke, F., Kneer, R., Burghold, M., Deppermann, M., Peng, B., Puls, H.: Modelling and compensation of thermoelastic workpiece deformation in dry cutting. In: Biermann, D., Hollmann, F. (eds.) Thermal Effects in Complex Machining Processes, Lecture Notes in Production Engineering, pp 63–94. Springer (2017)Google Scholar
  9. 9.
    Siebrecht, T., Wiederkehr, P., Zabel, A., Schweinoch, M., Byfut, A., Schröder, A.: Modeling, simulation and compensation of thermomechanically induced material deformation in dry NC milling processes. In: Biermann, D., Hollmann, F. (eds.) Thermal Effects in Complex Machining Processes, Lecture Notes in Production Engineering, pp 321–346. Springer (2017)Google Scholar
  10. 10.
    Spreng, F., Eberhard, P.: Modeling of orthogonal metal cutting using adaptive smoothed particle hydrodynamics. In: Biermann, D., Hollmann, F. (eds.) Thermal Effects in Complex Machining Processes, Lecture Notes in Production Engineering, pp 133–144. Springer (2017)Google Scholar
  11. 11.
    Uhlmann, E., Mahnken, R., Ivanov, I.M., Cheng, C.: Thermo-mechanical simulation of hard turning with macroscopic models. In: Biermann, D., Hollmann, F. (eds.) Thermal Effects in Complex Machining Processes, Lecture Notes in Production Engineering, pp 95–132. Springer (2017)Google Scholar
  12. 12.
    Wimmer, S., Loehe, J., Zaeh, M.F.: Coupling analytical and numerical models to simulate thermomechanical interaction during the milling process of thin-walled workpieces. In: Biermann, D., Hollmann, F. (eds.) Thermal Effects in Complex Machining Processes, Lecture Notes in Production Engineering, pp 321–346. Springer (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Mechanics (IM), TU DortmundDortmundGermany
  2. 2.Center for Industrial Mathematics, University of BremenBremenGermany

Personalised recommendations