Modeling, Simulation and Compensation of Thermal Effects in Gear Hobbing

  • M. Beutner
  • I. Kadashevich
  • B. Karpuschewski
  • T. Halle
Chapter
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

Gear hobbing of large ring gears is industrially performed using coolant, assuming that dry hobbing would cause geometrical deviations. To achieve the economic benefits of dry hobbing, the process and its influences have to be determined to ensure high gear quality. Temperature measurements of gears were conducted to detect influences of the cutting parameters on the workpiece quality. A chip formation simulation revealed the correlation of the heat flux into the workpiece and the chip volume. Furthermore, the hobbing process is kinematically described using quaternion algebra. In this context the gear is represented by the dexel modelling technique. Coupling the model with a finite element simulation, the simulation framework is able to calculate deviations of the gears induced by the thermo-mechanical load during gear hobbing.

Notes

Acknowledgements

The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG) for funding this work within the Priority Program SPP1480.

References

  1. 1.
    Klocke, F., et al.: Fertigungsverfahren 1 - Drehen, Fräsen, Bohren. 8. Auflage. Springer, Berlin (2007)Google Scholar
  2. 2.
    Bouzakis, K.D., et al.: Manufacturing of cylindrical gears by generating cutting processes: A critical synthesis of analysis methods. CIRP Ann. Manuf. Technol. 2(2), 676–696 (2008)Google Scholar
  3. 3.
    Sulzer, G.: Leistungssteigerung bei der Zylinderradherstellung durch genaue Erfassung der Zerspankinematik. Dissertation, TH Aachen (1973)Google Scholar
  4. 4.
    Hipke, M.: Wälzfräsen mit pulvermetallurgisch hergestelltem Schnellarbeitsstahl. Dissertation, University Magdeburg (2011)Google Scholar
  5. 5.
    Radzevich, S.P.: Dudley’s Handbook of Practical Gear Design and Manufacture, 2nd edn. CRC Press (2012)Google Scholar
  6. 6.
    Bouzakis, K.D., Friderikos, O., Tsiafis, I.: FEM-supported simulation of chip formation and flow in gear hobbing of spur and helical gears. CIRP J. Manuf. Sci. Technol. 1, 18–26 (2008)Google Scholar
  7. 7.
    Stuckenberg, A.: Vermeidung von Oberflächendefekten beim Wälzfräsen. Dissertation, RWTH Aachen (2014)Google Scholar
  8. 8.
    Müller, B.: Thermische Analyse des Zerspanens metallischer Werkstoffe bei hohen Schnittgeschindigkeiten. Dissertation, RWTH Aachen (2004)Google Scholar
  9. 9.
    Damaritürk, H.S.: Temperaturen und Wirkmechanismen beim Hochgeschwindigkeitsfräsen von Stahl, Technische Hochschule Darmstadt. Dissertation, Carl Hanser Verlag München Wien, Darmstadt (1990)Google Scholar
  10. 10.
    Beutner, M., Stark, S., Halle, T., Karpuschewski, B.: Messtechnische Erfassung und Simulation von thermischen Bearbeitungseinflüssen beim Wälzfräsen In: GETPRO 4. Kongress zur Getriebeproduktion, 05./06. März 2013, Würzburg, pp. 378–390 (2013)Google Scholar
  11. 11.
    Stark, S., et al.: Experimental and numerical determination of cutting forces and temperatures in gear hobbing. Key Eng. Mater. 504–506, 1275–1280 (2012)CrossRefGoogle Scholar
  12. 12.
    Stark, S., et al.: Heat flux and temperature distribution in gear hobbing operations. Procedia CIRP 8, 456–461 (2013)CrossRefGoogle Scholar
  13. 13.
    Eisenstöck, R.: Visualization of algebraic surfaces using the Dexel model. In: 9th European Workshop on Computational Geometry CG’93, pp. 48–51 (1993)Google Scholar
  14. 14.
    Hanson, A.J., et al.: Visualizing Quaternions—Series in Interactive 3D Technology. Morgan-Kaufmann/Elsevier (2005)Google Scholar
  15. 15.
    Kadashevich, I., Beutner, M., Karpuschewski, B., Halle, T.: A novel simulation approach to determine thermally induced geometric deviations in dry gear hobbing. Procedia CIRP 31, 483–488 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • M. Beutner
    • 1
  • I. Kadashevich
    • 1
  • B. Karpuschewski
    • 1
  • T. Halle
    • 1
  1. 1.Otto-von-Guericke University of MagdeburgMagdeburgGermany

Personalised recommendations