Dealing with the Complexity of Stakeholder Interaction in Participatory Transport Planning

  • Michela Le PiraEmail author
  • Giuseppe Inturri
  • Matteo Ignaccolo
  • Alessandro Pluchino
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 572)


Including an active participation of citizens and stakeholders from the beginning of transport decision-making processes is widely recognized as a precondition to avoid the failure of projects/policies/plans as a consequence of a lack of consensus. Appropriate methods and tools are needed to support participation processes towards well-thought and shared solutions. In this paper quantitative methods, stakeholder interaction and simulation models are used to guide and reproduce a participatory experiment aimed at consensus building about mobility management strategies. Analytic Hierarchy Process (AHP) has been used to elicit stakeholder preferences, different voting methods have been used to aggregate the individual preferences, group interaction has been performed via a facilitated dialogue to reach a consensus among stakeholders and an agent-based model (ABM) has been used to simulate the same consensus building process. Besides the social network of stakeholders has been analyzed to gain insights on its influence on the consensus formation.

The results of this integrated procedure, applied in a pilot experiment with University students as stakeholders, provide useful suggestions on how to use different methods and guide effective and efficient participation processes aimed at consensus building.


Stakeholder engagement Group interaction Analytic Hierarchy Process Agent-based model Social network analysis 


  1. 1.
    Arrow, K.J.: Social Choice and Individual Values. Yale University Press, New Haven (1951)zbMATHGoogle Scholar
  2. 2.
    Banister, D.: The sustainable mobility paradigm. Transp. Policy 15, 73–80 (2008)CrossRefGoogle Scholar
  3. 3.
    Bazzan, A.L.C., Klügl, F., Ossowski, S.: Agents in traffic and transportation: exploring autonomy in logistics, management, simulation, and cooperative driving. Transp. Res. Part C 13, 251–254 (2005)CrossRefGoogle Scholar
  4. 4.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Borda, J.C. de: Memoire sur les elections au scrutiny. Historoire de l’Academie Royals des Sciences, Paris (1781)Google Scholar
  6. 6.
    Caprì, S., Greco, A.: MOMACT (Mobility Management dell’Ateneo di CaTania): Piano Spostamenti Casa-Università: Documento Strategico (2009).
  7. 7.
    Cascetta, E., Pagliara, F.: Public engagement for planning and designing transportation systems. Procedia Soc. Behav. Sci. 87, 103–116 (2013). SIDT Scientific Seminar 2012CrossRefGoogle Scholar
  8. 8.
    Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591–646 (2009)CrossRefGoogle Scholar
  9. 9.
    Dasgupta, P., Maskin, E.: The Fairest Vote of All. Sci. Am. 290(3), 64–69 (2004)CrossRefGoogle Scholar
  10. 10.
    de Condorcet, M.: Essai sur l’Application de l’Analyse à la Probabilité des Décisions Rendues à la Pluralité des Voix. Imprimerie Royale. France, Paris (1785)Google Scholar
  11. 11.
    De Luca, S.: Public engagement in strategic transportation planning: An analytic hierarchy process based approach. Transp. Policy 33, 110–124 (2014)CrossRefGoogle Scholar
  12. 12.
    Escobar, M.T., Moreno-Jiménez, J.M.: Aggregation of individual preference structures in AHP-group decision making. Group Decis. Negot. 16, 287–301 (2007)CrossRefGoogle Scholar
  13. 13.
    García Melón, M., Estruch Guitart, V., Aragonés-Beltrán, P., Monterde-Roca, B.: Social network analysis in participatory environmental decision making. The case of Spanish wetland La Albufera. In: 12th International Symposium on the Analytic Hierarchy Process). Multi-criteria Decision Making, Kuala Lumpur, Malasia (2013)Google Scholar
  14. 14.
    Giansanti, A.: Remarks on the Condorcet’s paradox. In: AIP Conference Proceedings, vol. 965(1), pp. 308–314 (2007)Google Scholar
  15. 15.
    Ishizaka, A., Nemery, P.: Multi-Criteria Decision Analysis. Methods and Software. Wiley, Chichester (2013)CrossRefGoogle Scholar
  16. 16.
    Kelly, J., Jones, P., Barta, F., Hossinger, R., Witte, A., Christian, A.: Successful Transport Decision-Making – A Project Management and Stakeholder Engagement Handbook. European Commission, Bruxelles (2004)Google Scholar
  17. 17.
    Klügl, F.: A validation methodology for agent-based simulations. In: ACM symposium on Applied Computing, pp. 39–43 (2008). ISBN:978-1-59593-753-7Google Scholar
  18. 18.
    Le Pira, M.: Towards participatory decision-making processes in transport planning: an agent-based approach. Ph.D. thesis. University of Catania, Italy (2015).
  19. 19.
    Le Pira, M., Ignaccolo, M., Inturri, G., Garofalo, C., Pluchino A., Rapisarda, A.: Agent-based modelling of Stakeholder Interaction in Transport Decisions. In: 13th World Conference on Transport Research, Rio de Janeiro, Brasil (2013). ISBN:978-85-285-0232-9Google Scholar
  20. 20.
    Le Pira, M., Ignaccolo, M., Inturri, G., Pluchino, A., Rapisarda, A.: Finding shared decisions in stakeholder networks: an agent-based approach. Physica A Stat. Mech. Appl. 466, 277–287 (2017)CrossRefGoogle Scholar
  21. 21.
    Le Pira, M., Ignaccolo, M., Inturri, G., Pluchino, A., Rapisarda, A.: Modelling stakeholder participation in transport planning. Case Stud. Transp. Policy 4(3), 230–238 (2016)Google Scholar
  22. 22.
    Le Pira, M., Inturri, G., Ignaccolo, M.: Combined expert, stakeholder and citizen involvement for priority setting of cycling mobility strategies using analytic hierarchy process. In: International Conference on Traffic and Transport Engineering (ICTTE) (2016). ISBN:978-86-916153-3-8Google Scholar
  23. 23.
    Le Pira, M., Inturri, G., Ignaccolo, M., Pluchino, A.: Analysis of AHP methods and the Pairwise Majority Rule (PMR) for collective preference rankings of sustainable mobility solutions. Transp. Res. Procedia 10C, 852–862 (2015)Google Scholar
  24. 24.
    Le Pira, M., Inturri, G., Ignaccolo, M., Pluchino, A., Rapisarda, A.: Simulating opinion dynamics on stakeholders’ networks through agent-based modeling for collective transport decisions. Procedia Comput. Sci. 52, 884–889 (2015)Google Scholar
  25. 25.
    Litman, T.: Transportation cost and benefit analysis: techniques, estimates and implications [Second Edition] (2009).
  26. 26.
    Macharis, C.: The importance of stakeholder analysis in freight transport. Europ. Transp. Trasporti Europein 25–26, 114–126 (2005)Google Scholar
  27. 27.
    Macharis, C., De Witte, A., Turcksin, L.: The Multi-Actor Multi-Criteria Analysis (MAMCA) application in the Flemish long-term decision making process on mobility and logistics. Transp. Policy 17, 303–311 (2010)CrossRefGoogle Scholar
  28. 28.
    Mahmoud, M., Hine, J.: Using AHP to measure the perception gap between current and potential users of bus services. Transp. Plan. Technol. 36(1), 4–23 (2013)CrossRefGoogle Scholar
  29. 29.
    Mau-Crimmins, T., de Steiguer, J.E., Dennis, D.: AHP as a means for improving public participation: a pre-post experiment with university students. For. Policy Econ. 7, 501–514 (2005)CrossRefGoogle Scholar
  30. 30.
    Ortuzar, J., Willumsen, L.G.: Modelling Transport. Wiley, New York (2011)CrossRefGoogle Scholar
  31. 31.
    Piantanakulchai, M., Saengkhao, N.: Evaluation of alternatives in transportation planning using multi-stakeholders multi-objectives AHP modelling. In: Proceedings of the Eastern Asia Society for Transportation Studies, vol. 4, October 2003 (2003)Google Scholar
  32. 32.
    Prell, C., Hubacek, K., Reed, M.: Stakeholder analysis and social network analysis in natural resource management. Soc. Nat. Resour. Int. J. 22, 501–518 (2009)CrossRefGoogle Scholar
  33. 33.
    Quick, K., Narvaez, G. E., Saunoi-Sandgren E.: Changing minds through deliberation: citizens’ accounts of their changing policy problem definitions and preferences. In: International Research Society for Public Administration, Ottawa, Canada (2014)Google Scholar
  34. 34.
    Raffaelli, G., Marsili, M.: A Statistical Mechanics Model for the Emergence of Consensus (2005). arXiv:cond-mat/0403030 [cond-mat.stat-mech]
  35. 35.
    Saaty, T.L.: The Analytic Hierarchy Process. McGraw Hill, New York (1980)zbMATHGoogle Scholar
  36. 36.
    Saaty, T.L., Hu, G.: Ranking by eigenvector versus other methods in the analytic hierarchy process. Appl. Math. Lett. 11(4), 121–125 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Scott, J.: Social Network Analysis. SAGE Publications Ltd, London (2013)Google Scholar
  38. 38.
    Sivilevičius, H., Maskeliūnaite, L.: The criteria for identifying the quality of passengers’ transportation by railway and their ranking using AHP method. Transport 25(4), 368–381 (2010)CrossRefGoogle Scholar
  39. 39.
    Vermote, L., Macharis, C., Hollevoet, J., Putman, K.: Participatory evaluation of regional light rail scenarios: a Flemish case on sustainable mobility and land-use. Environ. Sci. Policy 37, 101–120 (2014)CrossRefGoogle Scholar
  40. 40.
    Voinov, A., Bousquet, F.: Modelling with stakeholders. Environ. Model Softw. 25, 1268–1281 (2010)CrossRefGoogle Scholar
  41. 41.
    Wefering, F., Rupprecht, S., Buhrmann, S., Bohler-Baedeker, S.: Guidelines. Developing and Implementing a Sustainable Urban Mobility Plan (2014). http://www.rupprecht-con

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Michela Le Pira
    • 1
    Email author
  • Giuseppe Inturri
    • 1
  • Matteo Ignaccolo
    • 1
  • Alessandro Pluchino
    • 2
  1. 1.University of CataniaCataniaItaly
  2. 2.University of Catania and INFN CataniaCataniaItaly

Personalised recommendations