Advertisement

Compound Log-Series Distribution with Negative Multinomial Summands

  • Pavlina JordanovaEmail author
  • Monika P. Petkova
  • Milan Stehlík
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10187)

Abstract

The paper presents the first full characterization of multivariate random sum with one and the same Logarithmic Series number of summands in each coordinate. The summands with equal indexes in any coordinate are Negative Multinomially distributed. We show that considered as a mixture, the resulting distribution coincides with Mixed Negative Multinomial distribution with scale changed Logarithmic Series distributed first parameter.

Keywords

Compound distributions Mixed distributions Negative multinomial distribution Logarithmic series distributions 

Notes

Acknowledgements

This work is partially supported by project Fondecyt Proyecto Regular No. 1151441, the Project RD-08-69/02.02.2016 from the Scientific Research Fund in Konstantin Preslavsky University of Shumen, Bulgaria and by the financial funds allocated to the Sofia University St. Kliment Ohridski, Bulgaria, grant No. 197/13.04.2016.

References

  1. 1.
    Bates, G.E., Neyman, J.: Contributions to the Theory of Accident Proneness. 1. An Optimistic Model of the Correlation Between Light and Severe Accidents, vol. 132. California University, Berkeley (1952)zbMATHGoogle Scholar
  2. 2.
    Fisher, R.A., Corbet, A.S., Williams, C.B.: The relation between the number of species and the number of individuals in a random sample of an animal population. J. Animal Ecol. 42–58 (1943)Google Scholar
  3. 3.
    Jose, K.K., Jacob, S.: Type II Bivariate Generalized Power Series Poisson Distribution and its Applications in Risk Analysis (2016)Google Scholar
  4. 4.
    Johnson, N.L., Kotz, S., Balakrishnan, N.: Discrete Multivariate Distributions, vol. 165. Wiley, New York (1997)zbMATHGoogle Scholar
  5. 5.
    Johnson, N.L., Kotz, S., Kemp, A.W.: Univariate Discrete Distributions, vol. 444. Wiley, New York (2005)CrossRefzbMATHGoogle Scholar
  6. 6.
    Jordanova, P.K., Petkova, M.M., Stehlik, M.: Compound Power Series Distribution with Negative Multinomial Summands (2016). SubmittedGoogle Scholar
  7. 7.
    Kendall, D.G.: On some modes of population growth leading to RA Fisher’s logarithmic series distribution. Biometrika 35(1/2), 6–15 (1948)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Khatri, C.G.: On certain properties of power-series distributions. Biometrika 46(3/4), 486–490 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kostadinova, K., Minkova, L.: Type II family of bivariate inflated-parameter generalized power series distributions. Serdica Math. J. 42(1), 27–42 (2016)MathSciNetGoogle Scholar
  10. 10.
    Patil, G.P.: On multivariate generalized power series distribution and its applications to the multinomial and negative multinomial. In: Proceedings of International Symposium at McGill University on Classical and Contageous Discrete Distributions, 15–20 August 1963, pp. 183–194. Statistical Publishing Society/Pergamon Press, Calcutta/Oxford (1965)Google Scholar
  11. 11.
    Philippou, A.N., Roussas, G.G.: A note on the multivariate logarithmic series distribution. Commun. Stat. Theory Methods 3(5), 469–472 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Sibuya, M., Yoshimura, I., Shimizu, R.: Negative multinomial distribution. Ann. Inst. Stat. Math. 16(1), 409–426 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Sundt, B., Vernic, R.: Recursions for Convolutions and Compound Distributions with Insurance Applications. Springer Science and Business Media, Berlin (2009)zbMATHGoogle Scholar
  14. 14.
    Tweedie, M.C.K.: The estimation of parameters from sequentially sampled data on a discrete distribution, series B (methodological). J. Roy. Stat. Soc. 14(2), 238–245 (1952)zbMATHGoogle Scholar
  15. 15.
    Wishart, J.: Cumulants of multivariate multinomial distribution. series B (methodological). Biometrika 36, 47–58 (1949)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pavlina Jordanova
    • 1
    Email author
  • Monika P. Petkova
    • 2
  • Milan Stehlík
    • 3
    • 4
  1. 1.Faculty of Mathematics and InformaticsShumen UniversityShumenBulgaria
  2. 2.Faculty of Mathematics and InformaticsSofia UniversitySofiaBulgaria
  3. 3.Institute of StatisticsUniversidad de ValparaísoValparaísoChile
  4. 4.Department of Applied StatisticsJohannes Kepler UniversityLinzAustria

Personalised recommendations