Advertisement

Non-singular Model for Evaporating Sessile Droplets

  • Stanislav Z. Dunin
  • Oleg V. NagornovEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10187)

Abstract

Evaporation of liquid droplets on solid substrates is used in many technological processes. Complexity and interdependence of the physical processes inside droplet and their mathematical descriptions, phase transitioning, energy and mass balance, points of singularity and thermocappilar effects force researchers to simplify models and to use numerical methods. We derive solution that has not non-singular heat flux at the droplet edge and describes the vapor concentration out of droplet and temperature at the surface. It allowed us to find out the Marangonni force and calculate non-singular velocity field that can change its direction in the stagnation points.

Keywords

Evaporation Droplets Heat and mass transfer 

References

  1. 1.
    Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A.: Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827–829 (1997)CrossRefGoogle Scholar
  2. 2.
    Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A.: Contact line deposits in an evaporating drop. Phys. Rev. E 62, 756–765 (2000)CrossRefGoogle Scholar
  3. 3.
    Deegan, R.D.: Pattern formation in drying drops. Phys. Rev. E 61, 475–485 (1998)CrossRefGoogle Scholar
  4. 4.
    Ristenpart, W.D., Kim, P.G., Domingues, C., Wan, J., Stone, H.A.: Influence of substrate conductivity on circulation reversal in evaporating drops. Phys. Rev. Lett. 99, 234502 (2007)CrossRefGoogle Scholar
  5. 5.
    Hu, H., Larson, R.G.: Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21, 3972–3980 (2005)CrossRefGoogle Scholar
  6. 6.
    Hu, H., Larson, R.G.: Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 106, 1334–1344 (2002)CrossRefGoogle Scholar
  7. 7.
    Hu, H., Larson, R.G.: Analysis of the micro fluid flow in an evaporating sessile droplet. Langmuir 21, 3963–3971 (2005)CrossRefGoogle Scholar
  8. 8.
    Hu, H., Larson, R.G.: Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 110, 7090–7094 (2006)CrossRefGoogle Scholar
  9. 9.
    Dunin, S.Z., Nagornov, O.V., Starostin, N.V., Trifonenkov, V.P.: Analytical solution for evaporating sessile drops on solid substrates. In: Recent Advances in Applied Mathematics, Modelling and Simulation, pp. 252–255 (2014)Google Scholar
  10. 10.
    Popov, Y.O.: Evaporative deposition patterns: spatial dimensions of the deposit. Phys. Rev. E 71, 036313 (2005)CrossRefGoogle Scholar
  11. 11.
    Dunn, G.J., Wilson, S.K., Duffy, B.R., David, S., Sefiane, K.: The strong influence of substrate conductivity on droplet evaporation. J. Fluid Mech. 623, 329–351 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Sefiane, K., Wilson, S.K., David, S., Dunn, G.J., Duffy, B.R.: On the effect of the atmosphere on the evaporation of sessile droplet of water. Phys. Fluids 21, 062101 (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    David, S., Sefiane, K., Tadrist, L.: Experimental investigation of the effect of thermal properties of the substrate in the wetting and evaporation of sessile drops. Colloids Surf. A: Physicochem. Eng. Aspects 298, 108–114 (2007)CrossRefGoogle Scholar
  14. 14.
    Semenov, S., Starov, V.M., Rubio, R.G., Agogo, H., Velarde, M.G.: Evaporation of sessile water droplets: universal behaviour in presence of contact angle hysteresis. Colloids Surf. Aspects 391, 135–144 (2011)CrossRefzbMATHGoogle Scholar
  15. 15.
    Saada, M.A., Chikh, S., Tadrist, L.: Evaporation of a sessile drop with pinned or receding contact line on a substrate with different thermophysical properties. Int. J. Heat Mass Transf. 58, 197–208 (2013)CrossRefGoogle Scholar
  16. 16.
    Semenov, S., Starov, V.M., Rubiob, R.G., Velarde, M.G.: Instantaneous distribution of fluxes in the course of evaporation of sessile liquid droplets: computer simulations. Colloids Surf. A: Physicochem. Eng. Aspects 372, 127–134 (2010)CrossRefGoogle Scholar
  17. 17.
    Fischer, B.J.: Particle convection in an evaporating colloidal droplet. Langmuir 18, 60–67 (2002)CrossRefGoogle Scholar
  18. 18.
    Larson, R.G.: Transport and deposition patterns in drying sessile droplets. AIChE J. 60, 1538–1571 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations