Skip to main content

Non-singular Model for Evaporating Sessile Droplets

  • Conference paper
  • First Online:
  • 1771 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10187))

Abstract

Evaporation of liquid droplets on solid substrates is used in many technological processes. Complexity and interdependence of the physical processes inside droplet and their mathematical descriptions, phase transitioning, energy and mass balance, points of singularity and thermocappilar effects force researchers to simplify models and to use numerical methods. We derive solution that has not non-singular heat flux at the droplet edge and describes the vapor concentration out of droplet and temperature at the surface. It allowed us to find out the Marangonni force and calculate non-singular velocity field that can change its direction in the stagnation points.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A.: Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827–829 (1997)

    Article  Google Scholar 

  2. Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A.: Contact line deposits in an evaporating drop. Phys. Rev. E 62, 756–765 (2000)

    Article  Google Scholar 

  3. Deegan, R.D.: Pattern formation in drying drops. Phys. Rev. E 61, 475–485 (1998)

    Article  Google Scholar 

  4. Ristenpart, W.D., Kim, P.G., Domingues, C., Wan, J., Stone, H.A.: Influence of substrate conductivity on circulation reversal in evaporating drops. Phys. Rev. Lett. 99, 234502 (2007)

    Article  Google Scholar 

  5. Hu, H., Larson, R.G.: Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21, 3972–3980 (2005)

    Article  Google Scholar 

  6. Hu, H., Larson, R.G.: Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 106, 1334–1344 (2002)

    Article  Google Scholar 

  7. Hu, H., Larson, R.G.: Analysis of the micro fluid flow in an evaporating sessile droplet. Langmuir 21, 3963–3971 (2005)

    Article  Google Scholar 

  8. Hu, H., Larson, R.G.: Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 110, 7090–7094 (2006)

    Article  Google Scholar 

  9. Dunin, S.Z., Nagornov, O.V., Starostin, N.V., Trifonenkov, V.P.: Analytical solution for evaporating sessile drops on solid substrates. In: Recent Advances in Applied Mathematics, Modelling and Simulation, pp. 252–255 (2014)

    Google Scholar 

  10. Popov, Y.O.: Evaporative deposition patterns: spatial dimensions of the deposit. Phys. Rev. E 71, 036313 (2005)

    Article  Google Scholar 

  11. Dunn, G.J., Wilson, S.K., Duffy, B.R., David, S., Sefiane, K.: The strong influence of substrate conductivity on droplet evaporation. J. Fluid Mech. 623, 329–351 (2009)

    Article  MATH  Google Scholar 

  12. Sefiane, K., Wilson, S.K., David, S., Dunn, G.J., Duffy, B.R.: On the effect of the atmosphere on the evaporation of sessile droplet of water. Phys. Fluids 21, 062101 (2009)

    Article  MATH  Google Scholar 

  13. David, S., Sefiane, K., Tadrist, L.: Experimental investigation of the effect of thermal properties of the substrate in the wetting and evaporation of sessile drops. Colloids Surf. A: Physicochem. Eng. Aspects 298, 108–114 (2007)

    Article  Google Scholar 

  14. Semenov, S., Starov, V.M., Rubio, R.G., Agogo, H., Velarde, M.G.: Evaporation of sessile water droplets: universal behaviour in presence of contact angle hysteresis. Colloids Surf. Aspects 391, 135–144 (2011)

    Article  MATH  Google Scholar 

  15. Saada, M.A., Chikh, S., Tadrist, L.: Evaporation of a sessile drop with pinned or receding contact line on a substrate with different thermophysical properties. Int. J. Heat Mass Transf. 58, 197–208 (2013)

    Article  Google Scholar 

  16. Semenov, S., Starov, V.M., Rubiob, R.G., Velarde, M.G.: Instantaneous distribution of fluxes in the course of evaporation of sessile liquid droplets: computer simulations. Colloids Surf. A: Physicochem. Eng. Aspects 372, 127–134 (2010)

    Article  Google Scholar 

  17. Fischer, B.J.: Particle convection in an evaporating colloidal droplet. Langmuir 18, 60–67 (2002)

    Article  Google Scholar 

  18. Larson, R.G.: Transport and deposition patterns in drying sessile droplets. AIChE J. 60, 1538–1571 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg V. Nagornov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dunin, S.Z., Nagornov, O.V. (2017). Non-singular Model for Evaporating Sessile Droplets. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Numerical Analysis and Its Applications. NAA 2016. Lecture Notes in Computer Science(), vol 10187. Springer, Cham. https://doi.org/10.1007/978-3-319-57099-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57099-0_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57098-3

  • Online ISBN: 978-3-319-57099-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics