A Comparison of Numerical Techniques for the FEM for the Stokes Problem for Incompressible Flow

  • Ekaterina DementyevaEmail author
  • Evgeniya Karepova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10187)


In this paper the two-dimensional Stokes equations are considered for a viscous incompressible fluid in a channel. To construct a discrete problem, we use the Taylor – Hood finite elements. When solving the discrete problem, we are interested in the comparison the stabilized biconjugate gradient method, the Arrow – Hurwicz algorithm, and the Uzawa methods. Moreover, we investigate a new modification of the Uzawa algorithm. The numerical analysis shows that the new algorithm is competitive with the Uzawa and gradient methods.


Stokes problem FEM Uzawa method BiCGstab 



The work is supported by RFBR (Project 14-01-00296).


  1. 1.
    Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier – Stokes problem. I. Regularity of solutions and second order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bercovier, M., Pironneau, O.: Error estimates for finite element method solution of the Stokes problem in the primitive variable. Numer. Math. 35, 211–224 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dementyeva, E., Karepova, E., Shaidurov, V.: The semi-Lagrangian approximation in the finite element method for the Navier-Stokes equations. In: AIP Conference Proceedings, vol. 1684, pp. 090009-1–090009-8 (2015)Google Scholar
  4. 4.
    Brezzi, F., Fortin, M.: Mixed and Hybrid finite element methods. Springer, New York (1991)CrossRefzbMATHGoogle Scholar
  5. 5.
    Benzi, M., Golub, G., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bychenkov, Y., Chizhonkov, E.: Iterative methods for solving saddle point problems. BINOM, Knowledge Laboratory, Moscow (2010)Google Scholar
  7. 7.
    Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    ur Rehman, M., Vuik, C., Segal, G.: A comparison of preconditioners for incompressible Navier-Stokes solvers. Int. J. Numer. Meth. Fluids 57, 1731–1751 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Zulehner, W.: Analysis of iterative methods for saddle-point problems: a unified approach. Math. Comput. 71, 479–505 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Astrakhantsev, G.P.: Analysis of algorithms of the Arrow – Hurwicz type. Zh. Vychisl. Mat. Mat. Fiz. 41, 17–28 (2001)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Wilkinson, J.H., Reinsch, C.: Handbook for Automatic Computation: Linear Algebra. Springer, Heidelberg (1976)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Computational Modelling of SB RASAkademgorodok, KrasnoyarskRussia
  2. 2.IM&CS, Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations