Numerical Modelling of Ion Transport in 5-HT3 Serotonin Receptor Using Molecular Dynamics

  • M. Yu. AntonovEmail author
  • A. V. Popinako
  • G. A. Prokopiev
  • A. O. Vasilyev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10187)


Cation selective ligand-gated ion channels are pore-forming membrane proteins. They are responsible for generating of transmembrane voltage and action potential, playing an important role in functioning of nervous systems. Mathematical modelling of transmembrane transport in membrane and membrane/protein structures using molecular dynamics (MD) method is often associated with difficulties, because it is nearly impossible to observe spontaneous diffusion in MD experiments. In this work Molecular Dynamics (MD) and Umbrella Sampling (US) methods are used to study ion transport through 5-HT3 Serotonin receptor.


Biophysics Molecular dynamics Biomembranes Ion channels Transmembrane transport Serotonin receptor 


  1. 1.
    Jegla, T.J., Zmasek, C.M., Batalov, S., Nayak, S.K.: Evolution of the human ion channel set. Comb. Chem. High Throughput Screen 12(1), 2–23 (2009)CrossRefGoogle Scholar
  2. 2.
    Kullmann, D.M., Hanna, M.G.: Neurological disorders caused by inherited ion-channel mutations. Lancet Neurol. 1(3), 157–166 (2002)CrossRefGoogle Scholar
  3. 3.
    Overington, J.P., Al-Lazikani, B., Hopkins, A.L.: How many drug targets are there? Nat. Rev. Drug Discov. 5(12), 993–996 (2006)CrossRefGoogle Scholar
  4. 4.
    Hopkins, A.L., Groom, C.R.: The druggable genome. Nat. Rev. Drug Discov. 1(9), 727–730 (2002)CrossRefGoogle Scholar
  5. 5.
    Wickenden, A., Priest, B., Erdemli, G.: Ion channel drug discovery: challenges and future directions. Future Med. Chem. 4(5), 661–679 (2012)CrossRefGoogle Scholar
  6. 6.
    Hassaine, G., Deluz, C., Grasso, L., Wyss, R., Tol, M.B., Hovius, R., Graff, A., Stahlberg, H., Tomizaki, T., Desmyter, A., Moreau, C., Li, X.D., Poitevin, F., Vogel, H., Nury, H.: X-ray structure of the mouse serotonin 5-HT3 receptor. Nature 512, 276–281 (2014)CrossRefGoogle Scholar
  7. 7.
    Popinako, A.V., Levtsova, O.V., Antonov, MYu., Nikolaev, I.N., Shaitan, K.V.: The structural and dynamic model of the serotonin 5-HT3 receptor. Comparative analysis of the structure of the channel domain of pentameric ligand-gated ion channels. Biofizika 56(6), 1111–1116 (2011)Google Scholar
  8. 8.
    Pischalnikova, A.V., Sokolova, O.S.: The domain and conformational organization in potassium voltage-gated ion channels. J. Neuroimmune Pharmacol. 4(1), 71–82 (2009)CrossRefGoogle Scholar
  9. 9.
    Kastner, J.: Umbrella sampling. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1(6), 932–942 (2011)CrossRefGoogle Scholar
  10. 10.
    Torrie, G.M., Valleau, J.P.: Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23(2), 187–199 (1977)CrossRefGoogle Scholar
  11. 11.
    Kumar, S., Rosenberg, J.M., Bouzida, D., Swendsen, R.H., Kollman, P.A.: The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13(8), 1011–1021 (1992)CrossRefGoogle Scholar
  12. 12.
    Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4(3), 435–447 (2008)CrossRefGoogle Scholar
  13. 13.
    Oostenbrink, C., Villa, A., Mark, A.E., van Gunsteren, W.F.: A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25(13), 1656–1676 (2004)CrossRefGoogle Scholar
  14. 14.
    Tieleman, D.P., Forrest, L.R., Sansom, M.S., Berendsen, H.J.: Lipid properties and the orientation of aromatic residues in OmpF, inuenza M2, and alamethicin systems: molecular dynamics simulations. Biochemistry 37(50), 17554–17561 (1998)CrossRefGoogle Scholar
  15. 15.
    Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926 (1983)CrossRefGoogle Scholar
  16. 16.
    Berman, H.M.: The protein data bank: a historical perspective. Acta Crystallogr. A 64(Pt 1), 88–95 (2008)CrossRefGoogle Scholar
  17. 17.
    Schmidt, T.H., Kandt, C.: LAMBADA and InflateGRO2: efficient membrane alignment and insertion of membrane proteins for molecular dynamics simulations. J. Chem. Inf. Model. 52(10), 2657–2669 (2012)CrossRefGoogle Scholar
  18. 18.
    Lague, P., Zuckermann, M.J., Roux, B.: Lipid-mediated interactions between intrinsic membrane proteins: dependence on protein size and lipid composition. Biophys. J. 81(1), 276–284 (2001)CrossRefGoogle Scholar
  19. 19.
    Nagle, J.F.: Area/lipid of bilayers from NMR. Biophys. J. 64(5), 1476–1481 (1993)CrossRefGoogle Scholar
  20. 20.
    Shaitan, K.V., Antonov, M.Y., Tourleigh, Y.V., Levtsova, O.V., Tereshkina, K.B., Nikolaev, I.N., Kirpichnikov, M.P.: Comparative study of molecular dynamics, diffusion, and permeability for ligands in biomembranes of different lipid composition. Biochem. Suppl. Ser. A. Membr. Cell Biol. 2, 73–81 (2008)Google Scholar
  21. 21.
    Braganza, L.F., Worcester, D.L.: Structural changes in lipid bilayers and biological membranes caused by hydrostatic pressure. Biochemistry 25(23), 7484–7488 (1986)CrossRefGoogle Scholar
  22. 22.
    Popinako, A.V., Levtsova, O.V., Antonov, M.Y., Nikolaev, I.N., Shaitan, K.V.: The structural and dynamic model of the serotonin 5-HT3 receptor. Comparative analysis of the structure of the channel domain of pentameric ligand-gated ion channels. Biophysics 56(6), 1078–1082 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • M. Yu. Antonov
    • 1
    Email author
  • A. V. Popinako
    • 2
  • G. A. Prokopiev
    • 1
  • A. O. Vasilyev
    • 1
  1. 1.M.K. Ammosov North-Eastern Federal UniversityYakutskRussia
  2. 2.Research Center of Biotechnology RASMoscowRussia

Personalised recommendations