Skip to main content

Information, Noise, and Energy Dissipation: Laws, Limits, and Applications

  • Conference paper
  • First Online:
Book cover Molecular Architectonics

Abstract

This chapter addresses various subjects, including some open questions related to energy dissipation, information, and noise, that are relevant for nano- and molecular electronics. The object is to give a brief and coherent presentation of the results of a number of recent studies of ours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kish, L.B.: End of Moore’s law: thermal (noise) death of integration in micro and nano electronics. Phys. Lett. A 305, 144–149 (2002)

    Article  CAS  Google Scholar 

  2. Kim, J., Kish, L.B.: Can single electron logic microprocessors work at room temperature? Phys. Lett. A 323, 16–21 (2004)

    Article  CAS  Google Scholar 

  3. Kish, L.B.: Moore’s Law and the energy requirement of computing versus performance. IEE Proc.—Circuits Devices Syst. 151, 190–194 (2004)

    Google Scholar 

  4. Li, Y., Kish, L.B.: Heat, speed and error limits of Moore’s law at the nano scales. Fluct. Noise Lett. 6, L127–L131 (2006)

    Article  Google Scholar 

  5. Gea-Banacloche, J., Kish, L.B.: Comparison of energy requirements for classical and quantum information processing. Fluct. Noise Lett. 3, C3–C6 (2003)

    Article  Google Scholar 

  6. Gea-Banacloche, J., Kish, L.B.: Future directions in electronic computing and information processing. Proc. IEEE 93, 1858–1863 (2005)

    Article  Google Scholar 

  7. Kish, L.B., Granqvist, C.G., Khatri, S.P., Smulko, J.: Critical Remarks on Landauer’s theorem of erasure-dissipation and the related issues of the molecular engines: Maxwell-demon and Szilard-engine. In: 23rd International Conference on Noise and Fluctuations (ICNF 2015), Xian, China, 2–5 June 2015. DOI:10.1109/ICNF.2015.7288632

  8. Kish, L.B., Granqvist, C.G., Khatri, S., Wen, H.: Demons: Maxwell demon Szilard engine and Landauer’s erasure-dissipation. Int. J. Mod. Phys. Conf. Ser. 33, 1460364 (2014)

    Article  Google Scholar 

  9. Kish, L.B., Granqvist, C.G.: Electrical Maxwell Demon and Szilard engine utilizing Johnson noise, measurement, logic and control. PLoS ONE 7, e46800 (2012)

    Article  CAS  Google Scholar 

  10. Kish, L.B., Granqvist, C.G.: Energy requirement of control. EPL 98, 68001 (2012)

    Article  Google Scholar 

  11. Kish, L.B., Granqvist, C.G., Khatri, S.P., Pepper, F.: Zero and negative energy dissipation at information-theoretic erasure. J. Comput. Electron. 15, 335–339 (2015)

    Article  Google Scholar 

  12. Kish, L.B., Granqvist, C.G., Khatri, S.P., Peper, F.: Response to Comment on ‘Zero and negative energy dissipation at information-theoretic erasure’. J. Comput. Electron. 15, 343–346 (2015)

    Article  Google Scholar 

  13. Kish, L.B., Niklasson, G.A., Granqvist, C.G.: Zero-point term and quantum effects in the Johnson noise of resistors: a critical appraisal. J. Stat. Mech. 2016, 054006 (2016)

    Google Scholar 

  14. Kish, L.B., Niklasson, G.A., Granqvist, C.G.: Zero thermal noise in resistors at zero temperature. Fluct. Noise. Lett. 15, 1640001 (2016)

    Google Scholar 

  15. Szilard, L.: On the reduction of entropy in a thermodynamic system by the interference of an intelligent being. Z. Phys. 53, 840–856 (1929)

    Article  CAS  Google Scholar 

  16. Brillouin, L.: The negentropy principle of information. J. Appl. Phys. 24, 1152–1163 (1953)

    Article  Google Scholar 

  17. Brillouin, L.: Science and Information Theory. Academic, New York (1962)

    Google Scholar 

  18. Alicki, R.: Stability versus reversibility in information processing. Int. J. Mod. Phys. Conf. Ser. 33, 1460353 (2014)

    Article  Google Scholar 

  19. von Neumann, J.: The computer and the brain. Berlinische Verlagsanstalt KG, Berlin, Germany (2012)

    Google Scholar 

  20. Anderson, N.G.: Information erasure in quantum systems. Phys. Lett. A 372, 5552–5555 (2008)

    Article  CAS  Google Scholar 

  21. Bennett, C.H.: Demons, engines and the second law. Sci. Am. 257, 108–116 (1987)

    Article  Google Scholar 

  22. Bennett, C.H.: Notes on Landauer’s principle, reversible computation, and Maxwell’s demon. Stud. Hist. Philos. Mod. Phys. 34, 501–510 (2003)

    Article  Google Scholar 

  23. Renyi, A.: Diary on Information Theory. Wiley, New York (1987)

    Google Scholar 

  24. Porod, W., Grondin, R.O., Ferry, D.K.: Dissipation in computation. Phys. Rev. Lett. 52, 232–235 (1984)

    Article  Google Scholar 

  25. Porod, W., Grondin, R.O., Ferry, D.K., Porod, G.: Dissipation in computation—reply. Phys. Rev. Lett. 52, 1206–1206 (1984)

    Google Scholar 

  26. Porod, W.: Energy requirements in communication—comment. Appl. Phys. Lett. 52, 2191–2191 (1988)

    Google Scholar 

  27. Norton, J.D.: Eaters of the lotus: Landauer’s principle and the return of Maxwell’s demon. Stud. Hist. Philos. Mod. Phys. 36, 375–411 (2005)

    Article  Google Scholar 

  28. Norton, J.D.: All shook up: fluctuations, Maxwell’s demon and the thermodynamics of computation. Entropy 15, 4432–4483 (2013)

    Article  Google Scholar 

  29. Gyftopoulos, E.P., von Spakovsky, M.R.: Comments on the breakdown of the Landauer bound for information erasure in the quantum regime. http://arxiv.org/abs/0706.2176 (2007)

  30. Johnson, J.B.: Thermal agitation of electricity in conductors. Nature 119, 50 (1927)

    Article  Google Scholar 

  31. Nyquist, H.: Thermal agitation of electric charge in conductors. Phys. Rev. 29, 614 (1927)

    Google Scholar 

  32. Callen, H.B., Welton, T.A.: Irreversibility and generalized noise. Phys. Rev. 83, 34 (1951)

    Article  Google Scholar 

  33. Landau, L., Lifshitz, E.: Statistical Physics. Addison Wesley, Reading (1974)

    Google Scholar 

  34. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II. Springer, Berlin (1985)

    Book  Google Scholar 

  35. Ginzburg, V.L., Pitaevskii, L.P.: Quantum Nyquist formula and the applicability ranges of the Callen-Welton formula. Sov. Phys. Usp. 30, 168 (1987)

    Article  Google Scholar 

  36. Zagoskin, A.M.: Quantum Engineering. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  37. Devoret, M.H.: Quantum fluctuations in electrical circuits. In: Reynaud, S., Giacobino, E., Zinn-Justin, J. (eds.) Fluctuations Quantique: Les Houches, Session LXIII, 1995. Elsevier, Amsterdam (1997)

    Google Scholar 

  38. Kiss, L.B., Kertesz, J., Hajdu, J.: Conductance noise spectrum of mesoscopic systems. Z. Phys. B 81, 299 (1990)

    Article  Google Scholar 

  39. Kleen, W.: Thermal radiation, thermal noise and zero-point energy. Solid-State Electron. 30, 1303 (1987)

    Article  Google Scholar 

  40. Kish, L.B.: Thermal noise engines. Chaos, Solitons Fractals 44, 114 (2011)

    Article  Google Scholar 

  41. Bressi, G., Carugno, G., Onofrio, R., Ruoso, G.: Measurement of the Casimir force between parallel metallic surfaces. Phys. Rev. Lett. 88, 041804 (2002)

    Article  CAS  Google Scholar 

  42. Koch, H., van Harlingen, D.J., Clarke, J.: Observation of zero-point fluctuations in a resistively shunted Josephson tunnel junction. Phys. Rev. Lett. 47, 1216 (1981)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laszlo B. Kish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kish, L.B., Granqvist, CG., Khatri, S.P., Niklasson, G.A., Peper, F. (2017). Information, Noise, and Energy Dissipation: Laws, Limits, and Applications. In: Ogawa, T. (eds) Molecular Architectonics. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-57096-9_2

Download citation

Publish with us

Policies and ethics