Design Principles for Do-It-Yourself Production

Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 68)


The increasing access of people to fabrication capabilities has stimulated the emergence of personal fabrication settings and inspired post-industrial production scenarios. One strategy to support personal production is to increase technology literacy and access for citizens to means of production. Yet, so far, the deliberate design of products so they can be realized by individuals, an activity termed here as “design for do-it-yourself (DIY) production”, has been under-explored in academia. The present article aims to formalize the know-how gained by practitioners who designed products for production in do-it-yourself settings. It provides an original definition of DIY and the formulation of 14 design principles for DIY production to support practice.


Distributed production Commons-based peer production Design principles DIY 


  1. 1.
    Bonvoisin, J., Mies, R., Jochem, R., Stark, R.: Theorie Und Praxis in der Open-Source-Produktentwicklung. In: Wülfsberg, J., Redlich, T., Moritz, M., (eds.) 1. Interdisziplinäre Konferenz zur Zukunft der Wertschöpfung – Konferenzband (2016). ISBN 978-3-86818-091-6Google Scholar
  2. 2.
    Kohtala, C., Hyysalo, S.: Anticipated environmental sustainability of personal fabrication. J. Clean. Prod. 99, 333–344 (2015)CrossRefGoogle Scholar
  3. 3.
    Bonvoisin, J.: Implications of open source design for sustainability. In: Setchi, R., Howlett, R.J., Liu, Y., Theobald, P. (eds.) Sustainable Design and Manufacturing 2016, pp. 49–59. Springer, Cham (2016)CrossRefGoogle Scholar
  4. 4.
    Fineder, M., Geisler, T., Hackenschmidt, S.: Nomadic Furniture 3.0 - Neues befreites Wohnen? New Liberated Living? Niggli Verlag, Zürich (2016)Google Scholar
  5. 5.
    Benkler, Y., Nissenbaum, H.: Commons-based peer production and virtue. J. Polit. Philos. 14(4), 394–419 (2006)CrossRefGoogle Scholar
  6. 6.
    Kohtala, C.: Addressing sustainability in research on distributed production: an integrated literature review. J. Clean. Prod. 106, 654–668 (2014)CrossRefGoogle Scholar
  7. 7.
    Chen, D., Heyer, S., Ibbotson, S., Salonitis, K., Steingrímsson, J.G., Thiede, S.: Direct digital manufacturing: definition, evolution, and sustainability implications. J. Clean. Prod. 107, 615–625 (2015)CrossRefGoogle Scholar
  8. 8.
    Redlich, T.: Open Production Gestaltungsmodell für die Wertschöpfung in der Bottom-up-Ökonomie. Universität der Bundeswehr Hamburg (2010)Google Scholar
  9. 9.
    Johansson, A., Kisch, P., Mirata, M.: Distributed economies – a new engine for innovation. J. Clean. Prod. 13(10–11), 971–979 (2005)CrossRefGoogle Scholar
  10. 10.
    Kostakis, V., Niaros, V., Dafermos, G., Bauwens, M.: Design global, manufacture local: exploring the contours of an emerging productive model. Futures 73, 126–135 (2015)CrossRefGoogle Scholar
  11. 11.
    Tyl, B., Lizarralde, I., Allais, R.: Local value creation and eco-design: a new paradigm. Procedia CIRP 30, 155–160 (2015)CrossRefGoogle Scholar
  12. 12.
    Association Pro France, Référentiel du label ‘Origine France Garantie’ V12 (2016)Google Scholar
  13. 13.
    Fu, K.K., Yang, M.C., Wood, K.L.: Design principles: literature review, analysis, and future directions. J. Mech. Des. 138(10), 101103 (2016)CrossRefGoogle Scholar
  14. 14.
    Vezzoli, C., Sciama, D.: Life cycle design: from general methods to product type specific guidelines and checklists: a method adopted to develop a set of guidelines/checklist handbook for the eco-efficient design of NECTA vending machines. J. Clean. Prod. 14(15–16), 1319–1325 (2006)CrossRefGoogle Scholar
  15. 15.
    Sarnes, J., Kloberdanz, H.: Heuristics guidelines in ecodesign. In: DS 80-1 Proceedings of the 20th International Conference on Engineering Design (ICED 2015), Design for Life, vol. 1, Milan, Italy, 27-30 July 2015 (2015)Google Scholar
  16. 16.
    Bonvoisin, J., Mathieux, F., Domingo, L., Brissaud, D.: Design for energy efficiency: proposi tion of a guidelines-based tool. In: Marjanovic, D., Storga, M., Pavkovic, N., Bojcetic, N., (eds.) Proceedings of DESIGN 2010, the 11th International Design Conference, pp. 629–638. The Design Society, Castle Cary (2010)Google Scholar
  17. 17.
    Lofthouse, V.: Ecodesign tools for designers: defining the requirements. J. Clean. Prod. 14(15–16), 1386–1395 (2006)CrossRefGoogle Scholar
  18. 18.
    Dahlström, H.: Company-specific guidelines. J. Sustainable Prod. Des. 8, 18–24 (1999)Google Scholar
  19. 19.
    Bischof, A., Blessing, L.: Guidelines for the development of flexible products. In: DS 48: Proceedings DESIGN 2008, the 10th International Design Conference, Dubrovnik, Croatia (2008)Google Scholar
  20. 20.
    Go, T.F., Wahab, D.A., Hishamuddin, H.: Multiple generation life-cycles for product sustainability: the way forward. J. Clean. Prod. 95, 16–29 (2015)CrossRefGoogle Scholar
  21. 21.
    Telenko, C., O’Rourke, J.M., Seepersad, C.C., Webber, M.E.: A compilation of design for environment guidelines. J. Mech. Des. 138(3), 031102 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Chair of Industrial Information Technology, Institute for Machine-tools and Factory ManagementTechnische Universität BerlinBerlinGermany
  2. 2.Institute of Design InnovationLoughborough University LondonLondonUK

Personalised recommendations