Skip to main content

Mg2SiO4:Er3+ Coating for Efficiency Increase of Silicon-Based Commercial Solar Cells

  • Conference paper
  • First Online:
Sustainable Design and Manufacturing 2017 (SDM 2017)

Abstract

Efficiency record commercial silicon solar panels convert about 25% of the sunlight into energy while the vast majority of conventional panels convert between 15% and 16%. The main factors of energy loss are the loss by light reflection on the cell surface and the loss by the energy emitted in the UV and IR band which is directly transmitted and/or converted to heat without being harnessed by the cell. To reduce these losses, it is proposed the use of rare earth doped Mg2SiO4 films. Preliminary absorption and emission tests for up and down conversion have indicated that the use of Mg2SiO4:Er3+, as a cell coating generates the conversion of IR energy into VIS energy, allowing the solar cell to use this energy. The presented forsterite films antireflection property, together with the erbium upconversion properties, indicates the Mg2SiO4:Er3+ as promising to increase the commercial silicon-based solar cells efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Energy Resources. World Energy Council, pp. 25–27 (2016)

    Google Scholar 

  2. EPIA: Global Market Outlook for Photovoltaics Until 2016, pp. 1–74 (2012)

    Google Scholar 

  3. Martin, A.G., Keith, E., Yoshihiro, H., et al.: Solar cell efficiency tables (version 47). Prog. Photovolt. Res. Appl. 24, 3–11 (2016)

    Article  Google Scholar 

  4. Ali, K., Kan, S.A., Matjafri, M.: 60Co γ-irradiation effects on electrical characteristics of monocrystalline silicon solar cell. Int. J. Electrochem. Sci. 8(6), 7831 (2013)

    Google Scholar 

  5. Minak, G., Fragassa, C., De Camargo, F.V.: A brief review on determinant aspects in energy efficient solar car design and manufacturing. In: Smart Innovation, Systems and Technologies

    Google Scholar 

  6. Ali, K., Khan, S., Jafri, M.: Structural and optical properties of ITO/TiO2 anti-reflective films for solar cell applications. Nanoscale Res. Lett. 9(1), 1–6 (2014)

    Article  Google Scholar 

  7. Ali, K., Khan, S.A., Jafri, M.Z.M.: Effect of double layer (SiO2/TiO2) anti-reflective coating on silicon solar cells. Int. J. Electrochem. Sci. 9, 7865–7874 (2014)

    Google Scholar 

  8. Fischer, S., Goldschmidt, J.C., Loper, P., Bauer, G.H., et al.: Enhancement of silicon solar cell efficiency by upconversion. Optical and electrical characterization. J. Appl. Phys. 108(4), 44912 (2010)

    Article  Google Scholar 

  9. Fathi, M., Kharaziha, M.: Mechanically activated crystallization of phase pure nanocrystalline forsterite powders. Mater. Lett. 62, 4306–4309 (2008)

    Article  Google Scholar 

  10. Ringwood, A.E.: Significance of the terrestrial Mg/Si ratio. Earth Planet. Sci. Lett. 95, 1–7 (1989)

    Article  Google Scholar 

  11. Suleimanov, S., Dyskin, V.G., Settarova, Z.S., Dzhanklych, M.U., et al.: Antireflection coatings for solar cells based on an alloy of a mixture of MgO and SiO2. Geliotekhnika 4, 62–63 (2010)

    Google Scholar 

  12. Tsunooka, A., Androua, M., Higashidaa, Y., Sugiurab, H., et al.: Effects of TiO2 on sinterability and dielectric properties of high-Q forsterite ceramics. J. Eur. Ceram. Soc. 23, 2573–2578 (2003)

    Article  Google Scholar 

  13. Abraham, E., Bordenave, E., Tsurumachi, N., et al.: Real-time two-dimensional imaging in scattering media by use of a femtosecond Cr4+:forsterite laser. Opt. Lett. 25, 929–931 (2000)

    Article  Google Scholar 

  14. Haase, M., Schafer, H.: Upconverting Nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011)

    Article  Google Scholar 

  15. Chia, S., Liu, T., Ivanov, A., Fedotov, A.: A sub-100fs self-starting Cr:forsterite laser generating 1.4W output power. Opt. Exp. 18, 23–25 (2010)

    Google Scholar 

  16. Niklaus, U.W., Alessandro, D.M., Izilda, M.R., et al.: Influence of excited-state-energy upconversion on pulse shape in quasi-continuous-wave diode-pumped Er:LiYF4 lasers. IEEE J. Quantum Electron. 46(1), 99–104 (2010)

    Article  Google Scholar 

  17. Zampiva, R.Y.S., Acauan, L., Alves, A.K., Bergmann, C.P.: Novel forsterite nanostructures with high aspect ratio via catalyst-free route. Mater. Res. Bull. 60, 507–509 (2014)

    Article  Google Scholar 

  18. Yan, D., Wu, P., Zhang, S.P., et al.: Assignments of the Raman modes of monoclinic erbium oxide. J. Appl. Phys. 114, 193502 (2013)

    Article  Google Scholar 

  19. Pal, M., Pal, U., et al.: Effects of crystallization and dopant concentration on the emission behavior of TiO2: Eu nanophosphors. Nanoscale Res. Lett. 7(1), 6–12 (2012)

    Article  Google Scholar 

  20. Raymond, F.C., Jay, K.R.: Mechanism of fluorescence concentration quenching of carboxyfluorescein in liposomes: energy transfer to nonfluorescent dimers. Anal. Biochem. 172, 61–77 (1988)

    Article  Google Scholar 

  21. Wu, X., Zhang, Y., Takle, K., et al.: Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 10, 1060–1066 (2016)

    Article  Google Scholar 

  22. Shiga, T.T., Tetsuya, S.: Anti-reflection optical article, United States Patent (4,904,525) (1987)

    Google Scholar 

  23. Quimby, R.S.: Upconversion and 980-nm excited-state absorption in erbium-doped glass. Fiber Laser Sources Amplifiers IV 1789, 50–57 (1992)

    Article  Google Scholar 

  24. Li, X., Zhou, S., Jiang, G., Wei, X., et al.: Blue upconversion of Tm3+ using Yb3+ as energy transfer bridge under 1532 nm excitation in Er3+, Yb3+, Tm3+ tri-doped CaMoO4. J. Rare Earths 33(5), 475–479 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubia Young Sun Zampiva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zampiva, R.Y.S., Alves, A.K., Bergmann, C.P. (2017). Mg2SiO4:Er3+ Coating for Efficiency Increase of Silicon-Based Commercial Solar Cells. In: Campana, G., Howlett, R., Setchi, R., Cimatti, B. (eds) Sustainable Design and Manufacturing 2017. SDM 2017. Smart Innovation, Systems and Technologies, vol 68. Springer, Cham. https://doi.org/10.1007/978-3-319-57078-5_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57078-5_77

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57077-8

  • Online ISBN: 978-3-319-57078-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics