Eco-Intelligent Factories: Timescales for Environmental Decision Support

  • Elliot WoolleyEmail author
  • Alessandro Simeone
  • Shahin Rahimifard
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 68)


Manufacturing decisions are currently made based on considerations of cost, time and quality. However there is increasing pressure to also routinely incorporate environmental considerations into the decision making processes. Despite the existence of a number of tools for environmental analysis of manufacturing activities, there does not appear to be a structured approach for generating relevant environmental information that can be fed into manufacturing decision making. This research proposes an overarching structure that leads to three approaches, pertaining to different timescales that enable the generation of environmental information, suitable for consideration during decision making. The approaches are demonstrated through three industrial case studies.


Manufacturing Environmental impact Decision support Artificial intelligence 


  1. 1.
    International Energy Agency. Key world energy statistics (2016).
  2. 2.
    Allwood, J., Cullen, J.: Sustainable Materials – With Both Eyes Open. UIT Cambridge, Cambridge (2012)Google Scholar
  3. 3.
    Öker, F., Adıgüzel, H.: Time-driven activity-based costing: an implementation in a manufacturing company. J. Corp. Account Financ. 27(3), 39–56 (2016). Accessed 25 Nov 2016
  4. 4.
    U.N.: United Nations Framework Convention on Climate Change, vol. 21, Paris Agreement C.N.63.2016.TREATIES-XXVII.7.d (2016).
  5. 5.
    Epstein, M.J., Buhovac, A.R., Yuthas, K.: Managing social, environmental and financial performance simultaneously. Long Range Plann. 48(1), 35–45 (2015)CrossRefGoogle Scholar
  6. 6.
    Wallace, T.F., Kremzar, M.H.: AM ERP: Making It Happen Resource Planning, 385 p. Wiley, New York (2001).
  7. 7.
    Holsapple, C.W., Sena, M.P.: ERP plans and decision-support benefits. Decis. Support Syst. 38, 575–590 (2005)CrossRefGoogle Scholar
  8. 8.
    Vijayaraghavan, A., Dornfeld, D.: Automated energy monitoring of machine tools. CIRP Ann. Manuf. Technol. 59(1), 21–24 (2010)CrossRefGoogle Scholar
  9. 9.
    Rahimifard, S., Seow, Y., Childs, T.: Minimising embodied product energy to support energy efficient manufacturing. CIRP Ann. Manuf. Technol. 59(1), 25–28 (2010)CrossRefGoogle Scholar
  10. 10.
    Melnyk, S.: Assessing the impact of environmental management systems on corporate and environmental performance. J. Oper. Manag. 21(3), 329–351 (2003). Accessed 14 Nov 2016
  11. 11.
    Fiksel, J., Wapman, K.: How to design for environment and minimize life cycle cost. In: Proceedings of 1994 IEEE International Symposium on Electronics and the Environment, pp. 75–80 (1994).
  12. 12.
    Wenzel, K., Riegel, J., Schlegel, A., Putz, M.: Semantic web based dynamic energy analysis and forecasts in manufacturing engineering. In: Hesselbach, J., Herrmann, C. (eds.) Glocalized Solutions for Sustainability in Manufacturing, pp. 507–512. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Kara, S., Bogdanski, G., Li, W.: Electricity metering and monitoring in manufacturing systems. In: Hesselbach, J., Herrmann, C. (eds.) Glocalized Solutions for Sustainability in Manufacturing - Proceedings of the 18th CIRP International Conference on Life Cycle Engineering, pp. 1–10. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Kara, S., Bogdanski, G., Li, W.: Electricity metering and monitoring in manufacturing systems. In: Hesselbach, J., Herrmann, C. (eds.) Glocalized Solutions for Sustainability in Manufacturing - Proceedings of the 18th CIRP International Conference on Life Cycle Engineering, pp. 1–10. Springer, Heidelberg (2011). Accessed 14 Nov 2016
  15. 15.
    Karnouskos, S., Izmaylova, A.: Simulation of web service enabled smart meters in an event-based infrastructure. In: IEEE International Conference on Industrial Informatics (INDIN), pp. 125–130 (2009)Google Scholar
  16. 16.
    Woolley, E., Seow, Y., Arinez, J., Rahimifard, S.: The changing landscape of energy management in manufacturing. In: Llamas Moya, B., Pous, J. (eds.) Greenhouse Gases (2016)Google Scholar
  17. 17.
    Byrne, D.M., Taguchi, S.: The Taguchi approach to parameter design. Qual Prog. 20(12), 19–26 (1987)Google Scholar
  18. 18.
    Guyon, I., Elisseeff, A.: An introduction to feature extraction. In: Feature Extraction - Foundations and Applications, vol. 207, 740 p. Springer, Heidelberg (2006).,
  19. 19.
    Segreto, T., Simeone, A., Teti, R.: Sensor fusion for tool state classification in nickel superalloy high performance cutting. Procedia CIRP 1, 593–598 (2012)CrossRefGoogle Scholar
  20. 20.
    Karam, S., Teti, R.: Wavelet transform feature extraction for chip form recognition during carbon steel turning. Procedia CIRP 12, 97–102 (2013)CrossRefGoogle Scholar
  21. 21.
    Simeone, A., Watson, N., Sterritt, I., Woolley, E.: A multi-sensor approach for fouling level assessment in clean-in-place processes. Procedia CIRP 55, 134–139 (2016). Accessed 7 Nov 2016
  22. 22.
    Simeone, A., Segreto, T., Teti, R.: Residual stress condition monitoring via sensor fusion in turning of Inconel 718. Procedia CIRP 12, 67–72 (2013)CrossRefGoogle Scholar
  23. 23.
    Simeone, A., Woolley, E.B., Rahimifard, S.: Tool state assessment for reduction of life cycle environmental impacts of aluminium machining processes via infrared temperature monitoring. Procedia CIRP 29, 526–531 (2015). Accessed 10 July 2015
  24. 24.
    Gould, O., Simeone, A., Colwill, J., Willey, R., Rahimifard, S.: A material flow modelling tool for resource efficient production planning in multi-product manufacturing systems. Procedia CIRP 41, 21–26 (2016). Accessed 19 Feb 2016
  25. 25.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)CrossRefGoogle Scholar
  26. 26.
    Nash, J.C.: The (Dantzig) simplex method for linear programming. Comput. Sci. Eng. 2(1), 29–31 (2000).
  27. 27.
    Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. (1934) 49(6), 409 (1952). MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning, 432 p. Addison Wesley, Boston (1989).
  29. 29.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B Cybern. 26(1), 29–41 (1996)CrossRefGoogle Scholar
  30. 30.
    Andrews, K.R.: The concept of corporate strategy. In: Resources, Firms, and Strategies: A Reader in the Resource-based Perspective, pp. 52–59 (1997).
  31. 31.
    Woolley, E., Sheldrick, L., Arinez, J., Rahimifard, S.: Extending the Boundaries of Energy Management for Assessing Manufacturing Business Strategies (2013)Google Scholar
  32. 32.
    Simeone, A., Luo, Y., Woolley, E., Rahimifard, S., Boër, C.: A decision support system for waste heat recovery in manufacturing. CIRP Ann. Manuf. Technol. 65(1), 21–24 (2016)CrossRefGoogle Scholar
  33. 33.
    Palabiyik, I., Yilmaz, M.T., Fryer, P.J., Robbins, P.T., Toker, O.S.: Minimising the environmental footprint of industrial-scaled cleaning processes by optimisation of a novel clean-in-place system protocol. J. Clean. Prod. 108(Part A), 1009–1018 (2015). Accessed 26 Apr 2016
  34. 34.
    Thomas, A., Sathian, C.T.: Cleaning-in-place (CIP) system in dairy plant-review. IOSR J. Environ. Sci. Ver. III 8(6), 2319–2399 (2014). Google Scholar
  35. 35.
    Jude, B., Lemaire, E.: How to Optimize Clean-in-Place (CIP) Processes in Food and Beverage Operations. Schneider Electric White Paper (2013).
  36. 36.
    Whitehead, K.A., Smith, L.A., Verran, J.: The detection of food soils and cells on stainless steel using industrial methods: UV illumination and ATP bioluminescence. Int. J. Food Microbiol. 127(1–2), 121–128 (2008)CrossRefGoogle Scholar
  37. 37.
    Otsu, N.: Threshold selection method from grey-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979). CrossRefGoogle Scholar
  38. 38.
    Tukker, A.: Eight types of product-service system: Eight ways to sustainability? Experiences from suspronet. Bus. Strateg. Environ. 13(4), 246–260 (2004)CrossRefGoogle Scholar
  39. 39.
    Kara, S., Manmek, S.: Impact of manufacturing supply chain on the embodied energy of products. In: Proceedings of the 43rd International Conference on Manufacturing Systems, Vienna, Austria, pp. 187–94 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Elliot Woolley
    • 1
    Email author
  • Alessandro Simeone
    • 1
  • Shahin Rahimifard
    • 1
  1. 1.Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Centre for Sustainable Manufacturing and Recycling TechnologiesLoughborough UniversityLoughboroughUK

Personalised recommendations