Skip to main content

Cyanobacteria in Polar and Alpine Ecosystems

  • Chapter
  • First Online:

Abstract

Cyanobacteria are commonly found in freshwaters, soils and glacial environments in polar and alpine regions. Studies to date indicate these cold-dwelling phototrophs are psychrotolerant rather than psychrophilic, with temperature optima for growth that lie well above the temperature ranges of their ambient environment. Cyanobacterial mats occur at the bottom of lakes, ponds and streams and within meltwater habitats on glaciers and ice shelves. They can accumulate large biomass stocks and may account for the dominant fraction of total ecosystem productivity in such environments. Certain taxa in these benthic communities are known to produce cyanotoxins, including microcystins. Planktonic cyanobacteria are also found in many high latitude lakes, specifically picocyanobacteria, but they are conspicuously absent or poorly represented in polar seas, probably as a result of their minimal growth rates in extreme cold. Cyanobacteria also occur in a variety of nonaquatic habitats in the cold regions, including on and within rocks, and as a major constituent of soil crusts in polar and alpine deserts. The nitrogen-fixing capabilities of some cyanobacteria make them especially important for the natural enrichment of soils that have been newly exposed after glacial retreat. The evolution and biogeography of cyanobacterial ecotypes in the cold biosphere is a current focus of genomic analysis and pole-to-pole comparisons, and these studies are providing insights into how microbial ecosystems survived prolonged periods of cold and freeze-up on early Earth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersen DT, Sumner DY, Hawes I, Webster-Brown J, Mackay CP (2011) Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology 9:280–293

    Article  CAS  PubMed  Google Scholar 

  • Archer SDJ, McDonald IR, Herbold CW, Lee CK, Cary CS (2015) Benthic microbial communities of coastal terrestrial and ice shelf Antarctic meltwater ponds. Front Microbiol 6:485

    Article  PubMed  PubMed Central  Google Scholar 

  • Baas-Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. van Stockum WP, Zoon NV, The Hague

    Google Scholar 

  • Bahl J, Lau MCY, Smith GJD, Vijaykrishna D, Cary C, Lacap DC, Lee CK, Papke RT, Warren-Rhodes KA, Wong FKY, McKay CP, Pointing SB (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blais M, Tremblay J-É, Jungblut AD, Gagnon J, Martin J, Thaler M, Lovejoy C (2012) Nitrogen fixation and identification of potential diazotrophs in the Canadian Arctic. Glob Biogeochem Cycles 26:GB3022. doi:10.1029/2011GB004096

    Article  CAS  Google Scholar 

  • Bonilla S, Villeneuve V, Vincent WF (2005) Benthic and planktonic algal communities in a high arctic lake: pigment structure and contrasting responses to nutrient enrichment. J Phycol 41:1120–1130

    Article  CAS  Google Scholar 

  • Cameron KA, Hodson AJ, Osborn AM (2012) Structure and diversity of bacteria, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS Microbiol Ecol 91:254–267

    Article  CAS  Google Scholar 

  • Cary SC, McDonald IR, Barrett JE, Coawn DA (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8:129–138

    Article  CAS  PubMed  Google Scholar 

  • Castenholz RW (1992) Species usage, concept, and evolution in the Cyanobacteria (blue-green algae). J Phycol 28:737–745

    Article  Google Scholar 

  • Castenholz RW (2001) Phylum BX. Cyanobacteria. Oxygenic photosynthetic bacteria. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology (the archaea and the deeply branching and phototrophic bacteria), vol 1. Springer, New York, NY, pp 473–599

    Chapter  Google Scholar 

  • Castenholz RW, Garcia-Pichel F (2000) Cyanobacterial responses to UV-radiation. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 591–611

    Google Scholar 

  • Chen M, Scheer H (2013) Extending the limits of natural photosynthesis and implications for technical light harvesting. J Porphyrins Phthalocyanines 17:1–15

    Article  CAS  Google Scholar 

  • Chan Y, Van Nostrand JD, Zhou J, Pointing SB, Farrell RL (2013) Proc Natl Acad Sci USA 110:8990–8995

    Google Scholar 

  • Chorus I, Bartram J (1999) Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management. World Health Organization, London

    Book  Google Scholar 

  • Chrismas N, Anesio AM, Sanches-Baracaldo P (2015) Multiple adaptations to polar and alpine environments within cyanobacteria: a phylogenomic and Bayesian approach. Front Microbiol 6:1070

    Article  PubMed  PubMed Central  Google Scholar 

  • Chrismas N, Barker G, Anesio AM, Sanches-Baracaldo P (2016) Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium Phormidesmis priestleyi BC1401. BMC Genom 17:533

    Article  Google Scholar 

  • Christner BC, Kvitoko BH, Reeve JN (2003) Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183

    CAS  PubMed  Google Scholar 

  • Cockell CS, Stokes MD (2004) Widespread colonization by polar hypoliths. Nature 431:414

    Article  CAS  PubMed  Google Scholar 

  • Comeau AM, Li WKW, Tremblay J-E, Carmack EC, Lovejoy C (2011) Changes in Arctic Ocean microbial community structure following the 2007 record sea ice minimum. PLoS ONE 6:e27492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook JM, Edwards A, Takeuchi N, Irvine-Fynn TDL (2015) Cryoconite: the dirty biological secret of the cryosphere. Prog Phys Geogr 40:66–111

    Article  Google Scholar 

  • Cowan DA, Khan N, Pointin SB, Cary SG (2010) Diversity of hypolithic refuge communities in the McMurdo Dry Valleys. Antarct Sci 22:714–720

    Article  Google Scholar 

  • de los Ríos A, Grube M, Sancho LG, Ascaso C (2007) Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol 59:386–395

    Article  PubMed  CAS  Google Scholar 

  • de los Ríos A, Ascaso C, Wierzchos J, Vincent WF, Quesada A (2015) Microstructure and cyanobacterial composition of microbial mats from the High Arctic. Biodivers Conserv 24:841–886

    Article  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards A, Anesio AM, Rassner SM et al (2011) Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME J 5:150–160

    Article  PubMed  Google Scholar 

  • Edwards A, Mur LAJ, Girdwood SE et al (2014) Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers. FEMS Microbiol Ecol 89:222–237

    Article  CAS  PubMed  Google Scholar 

  • Elster J, Syobody J, Komárek J, Marvan P (1997) Algal and cyanoprocaryote communities in a glacial stream, Sverdrup Pass, 79N, Central Ellesmere Island, Canada. Arch Hydrobiol Suppl 119:57–93

    Google Scholar 

  • Fernandez-Valiente E, Camacho A, Rochera C, Rico E, Vincent WF, Quesada A (2007) Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). FEMS Microbiol Ecol 59:377–385

    Article  CAS  PubMed  Google Scholar 

  • Fewer D, Friedl T, Büdel B (2002) Chroococcidiopsis and heterocyst-differentiating cyanobacteria are each other’s closest living relatives. Mol Phylogenet Evol 23:82–90

    Article  CAS  PubMed  Google Scholar 

  • Foreman CM, Sattler B, Mikucki J et al (2007) Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. J Geophys Res 112:1–11

    Article  CAS  Google Scholar 

  • Fouilland E, Descolas-Gros C, Courties C, Pons V (1999) Autotrophic carbon assimilation and biomass from size-fractionated phytoplankton in the surface waters across the subtropical frontal zone (Indian Ocean). Polar Biol 21:90–96

    Article  Google Scholar 

  • Friedmann EI, Ocampo R (1976) Endolithic blue-green algae in the Dry Valleys: primary producers in the Antarctic ecosystem. Science 193:1247–1249

    Article  CAS  PubMed  Google Scholar 

  • Geitler L (1932) Cyanophyceae. In: Kolkwitz R (ed) Rabenhorst’s Kryptogamenflora von Deutschland, Osterreich und der Schweiz. Akademische Verlagsgesellschaft, Leibzig

    Google Scholar 

  • Gokul JK, Hodson AJ, Saetnan ER, Irvine-Fynn TDL, Westall PJ, Detheride AP, Takeychi N, Bussell J, Mur LAJ, Edwards E (2016) Taxon interactions control the distributions of cryoconite bacteria colonizing a High Arctic ice cap. Mol Ecol 25:3752–3767

    Article  PubMed  Google Scholar 

  • Green WJ, Angle MP, Chave KE (1988) The geochemistry of Antarctic streams and their role in the evolution of four lakes of the McMurdo Dry Valleys. Geochim Cosmochim Acta 52:1265–1274

    Article  CAS  Google Scholar 

  • Harding T, Jungblut AD, Lovejoy C, Vincent WF (2011) Microbes in High Arctic snow and implications for the cold biosphere. Appl Environ Microbiol 77:3234–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawes I, Schwarz AM (2001) Absorption and utilization of irradiance by cyanobacterial mats in two ice-covered Antarctic lakes with contrasting light climates. J Phycol 37:5–15

    Article  CAS  Google Scholar 

  • Hawes I, Howard-Williams C, Pridmore RD (1993) Environmental control of microbial biomass in the ponds of the McMurdo Ice Shelf, Antarctica. Arch Hydrobiol 127:271–287

    Google Scholar 

  • Hawes I, Sumner DY, Andersen DT, Mackey TJ (2011) Legacies of recent environmental change in the benthic communities of Lake Joyce, a perennially ice-covered Antarctic lake. Geobiology 9:394–410

    Article  CAS  PubMed  Google Scholar 

  • Hitzfeld B, Lampert CS, Spaeth N, Mountfort D, Kaspar H, Dietrich DR (2000) Toxin production in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Toxicon 38:1731–1748

    Article  CAS  PubMed  Google Scholar 

  • Hodson A, Cameron K, Bøggild C et al (2010) The structure, biogeochemistry and formation of cryoconite aggregates upon an Arctic valley glacier; Longyearbreen, Svalbard. J Glaciol 56:349–362

    Article  CAS  Google Scholar 

  • Hoffman PF (2016) Cryoconite pans on Snowball Earth: supraglacial oases for Cryogenian eukaryotes? Geobiology 14:531–542

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann L, Komárek J, Kaštovský J (2005a) System of cyanoprokaryotes (cyanobacteria) – state in 2004. Algol Stud 117:95–115

    Article  Google Scholar 

  • Hoffmann L, Komárek J, Kaštovský J (2005b) Proposal of cyanobacterial system – 2004. In: Büdel B, Krienitz L, Gärtner G, Schagerl M (eds) Süsswasserflora von Mitteleuropa 19/2. Elsevier/Spektrum, Heidelberg, pp 657–660

    Google Scholar 

  • Howard-Williams C, Pridmore RD, Downes MT, Vincent WF (1989) Microbial biomass, photosynthesis and chlorophyll a related pigments in the ponds of the McMurdo Ice Shelf, Antarctica. Antarct Sci 1:125–131

    Article  Google Scholar 

  • Janatková K, Řeháková K, Doležal J, Šimek M, Chlumská Z, Dvorský M, Kopecký M (2013) Community structure of soil phototrophs along environmental gradients in arid Himalaya. Environ Microbiol 15:2505–2516

    Article  PubMed  CAS  Google Scholar 

  • Jancusova M, Kovacik L, Batista Periera A, Dusinsky R, Wilmotte A (2016) Polyphasic characterization of 10 selected ecologically relevant filamentous cyanobacterial strains from the South Shetland Islands, Maritime Antarctica. FEMS Microbiol Ecol 92:fiw100

    Article  PubMed  Google Scholar 

  • Jungblut AD, Neilan BA (2010) NifH-gene diversity and expression in a microbial mat community on the McMurdo Ice Shelf, Antarctica. Antarct Sci 22:177–122

    Article  Google Scholar 

  • Jungblut AD, Hawes I, Mountfort D, Hitzfeld B, Dietrich DR, Burns BP, Neilan BA (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ Microbiol 7:519–529

    Article  CAS  PubMed  Google Scholar 

  • Jungblut AD, Hoeger SJ, Mountford D, Hitzfeld BC, Dietrich DR, Neilan BA (2006) Characterization of microcystin production in an Antarctic cyanobacterial mat community. Toxicon 47:271–278

    Article  CAS  PubMed  Google Scholar 

  • Jungblut AD, Lovejoy C, Vincent WF (2010) Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 4:191–202

    Article  CAS  PubMed  Google Scholar 

  • Jungblut AD, Wood SA, Hawes I, Webster-Brown J, Harris C (2012) The Pyramid Trough Wetland: environmental and biological diversity in a newly created Antarctic protected area. FEMS Microbiol Ecol 82:356–366

    Article  CAS  PubMed  Google Scholar 

  • Jungblut AD, Hawes I, Mackey TJ, Krusor M, Doran PT, Sumner DY, Eisen JA, Hillman C, Goroncy AK (2016) Microbial mat communities along an oxygen gradient in a perennially ice-covered Antarctic lake. Appl Environ Microbiol 82:620–630

    Article  CAS  PubMed Central  Google Scholar 

  • Jungblut AD, Mueller D, Vincent WF (2017) Arctic ice shelf ecosystems. In: Copland L, Mueller DR (eds) Arctic Ice Shelves and Ice Islands. Springer SBM, Dordrecht

    Google Scholar 

  • Kaebernick M, Neilan BA (2001) Ecological and molecular investigations of cyanotoxin production. FEMS Microbiol Ecol 35:1–9

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Tuffin M, Stafford W, Cary C, Lacap DC, Pointing SB et al (2011) Hypolithic microbial communities of quartz rocks from Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biol 34:1657–1668

    Article  Google Scholar 

  • Kleinteich J, Wood SA, Kupper FC, Camacho A, Quesada A, Frickey T, Dietrich DR (2012) Temperature-related changes in polar cyanobacterial mat diversity and toxin production. Nat Clim Chang 2:356–360

    Article  CAS  Google Scholar 

  • Kleinteich J, Wood SA, Puddick J, Schleheck D, Kupper FC, Dietrich D (2013) Potent toxins in Arctic environments: presence of saxitoxins and an unusual microcystin variant in Arctic freshwater ecosystems. Chem Biol Interact 206:423–431

    Article  CAS  PubMed  Google Scholar 

  • Kleinteich J, Hildebrand F, Wood SA, Cirs S, Agha R, Quesada A, Pearce D, Convey P, Küpper F, Dietrich DR (2014) Diversity of toxin and non-toxin containing cyanobacterial mats of meltwater ponds on the Antarctic Peninsula: a pyrosequencing approach. Antarct Sci 26:521–532

    Article  Google Scholar 

  • Koh EY, Cowie ROM, Simpson AM, O’Toole R, Ryan KG (2012) The origin of cyanobacteria in Antarctic sea ice: marine or freshwater? Environ Microbiol Rep 4:479–483

    Article  CAS  PubMed  Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota 2. Teil Oscillatoriales. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Komárek J, Nedbalová L, Hauer T (2012) Phylogenetic position and taxonomy of three heterocytous cyanobacteria dominating the littoral of deglaciated lakes, James Ross Island, Antarctica. Polar Biol 35:759–774

    Article  Google Scholar 

  • Komárek J, Kaštovský J, Mareš J, Johansen JR (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86:295–335

    Google Scholar 

  • Langford H, Hodson A, Banwart S, Bøggild C (2010) The microstructure and biogeochemistry of Arctic cryoconite granules. Ann Glaciol 51:87–94

    Article  CAS  Google Scholar 

  • Leslie A (1879) The Arctic voyages of Adolf Erik Nordenskiöld. MacMillan, London

    Google Scholar 

  • Lionard M, Péquin B, Lovejoy C, Vincent WF (2012) Benthic cyanobacterial mats in the High Arctic: multi-layer structure and fluorescence responses to osmotic stress. Front Aquat Microbiol 3:140

    CAS  Google Scholar 

  • Mackey TJ, Sumner DY, Hawes I, Jungblut A-D, Andersen DT (2015) Branched stromatolites in Lake Joyce, Antarctica. Geobiology 13:373–390

    Article  CAS  PubMed  Google Scholar 

  • Magalhaes C, Stevens MI, Cary SC, Ball BA, Storey BC, Wall DH, Tuerk R, Ruprecht U (2012) At limits of life: multidisciplinary insights reveal environmental constraints on biotic diversity in continental Antarctica. PLoS ONE 7:e44578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makhalanyane TP, Valverde A, Lacap DC, Pointing SB, Tuffin M, Cowan DA (2013) Evidence of species recruitment and development of hot desert hypolithic communities. Environ Microbiol Rep 5:219–224

    Article  PubMed  Google Scholar 

  • Marchant HJ (2005) Cyanophytes. In: Scott FJ, Marchant HJ (eds) Antarctic marine protists. Australian Biological Resources Study, Canberra, pp 324–325

    Google Scholar 

  • Marchant HJ, Davidson AT, Wright SW (1987) The distribution and abundance of chroococcoid cyanobacteria in the Southern Ocean. Proc NIPR Symp Polar Biol 1:1–9

    Google Scholar 

  • Margesin R, Häggblom M (2007) Thematic issue: microorganisms in cold environments. FEMS Microbiol Ecol 59:215–216

    Article  CAS  Google Scholar 

  • Martineau E, Wood SA, Miller MR, Jungblut AD, Hawes I, Webster-Brown J, Packer MA (2013) Characterisation of Antarctic cyanobacteria and comparison with New Zealand strains. Hydrobiology 711:139–154

    Article  CAS  Google Scholar 

  • McClintic AS, Casamatta DA, Vis ML (2003) A survey of algae from montane cloud forest and alpine streams in Bolivia: macroalgae and associated microalgae. Nova Hedwigia 76:363–379

    Article  Google Scholar 

  • Mez K, Hanselmann K, Preisig HR (1998) Environmental conditions in high mountain lakes containing toxic benthic cyanobacteria. Hydrobiologia 368:1–15

    Article  CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyashi S (1996) Chlorophyll d as a major pigment. Nature 383:402

    Article  CAS  Google Scholar 

  • Moffitt CM, Neilan AB (2004) Characterization of the nodularin synthetase gene cluster and proposed evolution of cyanobacterial hepatotoxins. Appl Environ Microbiol 70:6353–6362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller DR, Vincent WF, Jeffries MO (2003) Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophys Res Lett 30:2031

    Article  Google Scholar 

  • Mueller DR, Copland L, Hamilton A, Stern DR (2008) Examining Arctic ice shelves prior to 2008 breakup. EOS Trans Am Geophys Union 89:502–503

    Article  Google Scholar 

  • Murray J (1910) British Antarctic expedition 1907–1909. Reports on the scientific investigations. Biology 1(Part V):83–187

    Google Scholar 

  • Nadeau TL, Milbrandt EC, Castenholz RW (2001) Evolutionary relationships of cultivated Antarctic Oscillatoriaceans (cyanobacteria). J Phycol 37:650–654

    Article  Google Scholar 

  • Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2007) Microbial community succession in an unvegetated, recently deglaciated soil. Microb Ecol 53:110–122

    Article  PubMed  Google Scholar 

  • Niederberger TD, Sohm JA, Gunderson TE, Parker AE, Tirindelli J, Capone DG, Carpenter EK, Cary SC (2015) Microbial community composition of transiently wetted Antarctic Dry Valley soils. Front Microbiol 6:9

    PubMed  PubMed Central  Google Scholar 

  • Novis PM, Smissen RD (2006) Two genetic and ecological groups of Nostoc commune in Victoria Land, Antarctia, revealed by AFLP analysis. Antarct Sci 18:573–581

    Article  Google Scholar 

  • Omelon CR, Pollard WH, Ferris FG (2006) Environmental controls on microbial colonization of high Arctic cryptoendolithic habitats. Polar Biol 30:19–29

    Article  Google Scholar 

  • Oren A (2000) Salt and brines. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Press, Dordrecht, pp 281–306

    Google Scholar 

  • Oren A (2004) A proposal for further integration of the cyanobacteria under the Bacteriological Code. Int J Syst Evol Microbiol 54:1895–1902

    Article  PubMed  Google Scholar 

  • Pointing SB, Chan Y, Lacap DC, Lau MC, Jurgens JA, Farrell RL (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci U S A 106:19964–19969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pointing SB, Büdel B, Convey P, Gillman L, Körner C, Leuzinger S, Vincent WF (2015) Biogeography of photoautotrophs in the high polar biome. Front Plant Sci 6:692

    Article  PubMed  PubMed Central  Google Scholar 

  • Porazinska DL, Fountain AG, Nylen TH et al (2004) The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley Glaciers, Antarctica. Arct Antarct Alp Res 36:84–91

    Article  Google Scholar 

  • Przytulska A, Bartosiewicz M, Rautio M, Dufresne F, Vincent WF (2015) Climate effects on Arctic Daphnia via food quality and thresholds. PLoS ONE 10:e0126231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quesada A, Vincent WF (2012) Cyanobacteria in the cryosphere: snow, ice and extreme cold. In: Whitton BA (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer, New York, NY, pp 387–399

    Chapter  Google Scholar 

  • Rajaniemi P, Hrouzek P, Kastovska K, Willame R, Rantala A, Hoffmann L, Komarek J, Sivonen K (2005) Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int J Syst Evol Microbiol 55:11–26

    Article  CAS  PubMed  Google Scholar 

  • Rantala A, Fewer D, Hisburges M, Rouhiainen L, Vaitomaa J, Börner T (2004) Phylogenetic evidence for the early evolution of the microcystin synthesis. Proc Natl Acad Sci U S A 101:568–573

    Article  CAS  PubMed  Google Scholar 

  • Rocap G, Distel DL, Waterbury JB, Chisholm SW (2002) Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiol 68(3):1180–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rott E, Cantonati M, Füreder L, Pfister P (2006) Benthic algae in high altitude streams of the Alps-a neglected component of the aquatic biota. Hydrobiology 562:195–216

    Article  Google Scholar 

  • Sabbe K, Hodgson DA, Verlyen E, Taton A, Wilmotte A, Vanhoutte KD, Vyverman W (2004) Salinity, depth and the structure and composition of microbial mats in continental Antarctic lakes. Freshw Biol 49:296–319

    Article  Google Scholar 

  • Säwström C, Mumford P, Marshall W, Hodson A, Laybourn-Parry J (2002) The microbial communities and primary productivity of crycoconite holes in an Arctic glacier (Svalbard 79°N). Polar Biol 25:591–596

    Google Scholar 

  • Schmidt SK, Reed SC, Nemergut DR, Grandy AS, Cleveland CC, Weintraub MN, Hill AW, Costello EK, Meyer AF, Neff JC, Martin AM (2008) The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proc R Soc Lond B Biol Sci 275:2793–2802

    Article  CAS  Google Scholar 

  • Sigler WV, Bachofen R, Zeier J (2003) Molecular characterization of endolithic cyanobacteria inhabiting exposed dolomite in central Switzerland. Environ Microbiol 5:618–627

    Article  CAS  PubMed  Google Scholar 

  • Sommaruga R, Garcia-Pichel F (1999) UV-absorbing mycosporine-like compounds in planktonic and benthic organisms from a high-mountain lake. Arch Hydrobiol 144:255–269

    Article  CAS  Google Scholar 

  • Stanier RY, Sistrom WR, Hansen TA, Whitton BA, Castenholz RW, Pfennig N, Gorlenko VN, Kondratieva EN, Eimhjellen KE, Whittenbury R, Gherma RL, Trüper HG (1978) Proposal to place nomenclature of cyanobacteria (blue-green-algae) under rules of International Code of Nomenclature of Bacteria. Int J Syst Bacteriol 28:335–336

    Article  Google Scholar 

  • Stanish LF, O’Neil SP, Gonzales A, Legg TM, Knelman J, McKnight DM, Spaulding S, Nemergut DR (2013) Bacteria and diatom co-occurrence patterns in microbial mats from polar desert streams. Environ Microbiol 15:1115–1131

    Article  CAS  PubMed  Google Scholar 

  • Stevens B, Lionard M, Kuske CR, Vincent WF (2013) High bacterial diversity of biological soil crusts in water tracks over permafrost in the High Arctic polar desert. PLoS ONE 8:e71489

    Article  CAS  Google Scholar 

  • Stibal M, Sabacká M, Kastovská K (2006) Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb Ecol 52:644–654

    Article  PubMed  Google Scholar 

  • Stibal M, Schostag M, Cameron KA et al (2015) Different bulk and active bacterial communities in cryoconite from the margin and interior of the Greenland ice sheet. Environ Microbiol Rep 7:293–300

    Article  CAS  PubMed  Google Scholar 

  • Stomeo F, Valverde A, Pointing SB, McKay CP, Warren-Rhodes KA, Tuffin MI et al (2013) Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert. Extremophiles 17:329–337

    Article  PubMed  Google Scholar 

  • Strunecky O, Elster J, Komarek J (2011) Taxonomic revision of the freshwater cyanobacterium Phormidium murrayi = Wilmottia murrayi. Fottea 11:57–71

    Article  Google Scholar 

  • Sumner DY, Hawes I, Mackey TJ, Jungblut AD, Doran PT (2015) Antarctic microbial mats: a modern analogue for Archean lacustrine oxygen oases. Geology 43:887–890

    Article  CAS  Google Scholar 

  • Sumner D, Jungblut AD, Hawes I, Andersen DT, Mackey TJ, Wall K (2016) Growth of elaborate microbial pinnacles in Lake Vanda, Antarctica. Geobiology 14:556–574

    Article  CAS  PubMed  Google Scholar 

  • Tanabe Y, Ohtan S, Kasamatsu N, Fukuchi M, Kudoh S (2010) Photophysiological responses of phytobenthic communities to the strong light and UV in Antarctic shallow lakes. Polar Biol 33:85–100

    Article  Google Scholar 

  • Tang EPY, Vincent WF (1999) Strategies of thermal adaptation by high latitude cyanobacteria. New Phytol 142:315–323

    Article  Google Scholar 

  • Tang EPY, Tremblay R, Vincent WF (1997) Cyanobacterial dominance of polar freshwater ecosystems: are high latitude mat-formers adapted to the low temperature environment? J Phycol 33:171–181

    Article  Google Scholar 

  • Tashyreva D, Elster J (2016) Annual cycles of two cyanobacterial mat communities in hydro-terrestrial habitats of the High Arctic. Microb Ecol 71:887–900

    Article  CAS  PubMed  Google Scholar 

  • Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taton A, Grubisic S, Balhasart P, Hodgson DA, Laybourn-Parry J, Wilmotte A (2006a) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57:272–289

    Article  CAS  PubMed  Google Scholar 

  • Taton A, Grubisic S, Ertz D, Hodgson DA, Piccardi R, Biondi N, Tredici MR, Mainini M, Losi D, Marinelli F, Wilmotte A (2006b) Polyphasic study of Antarctic cyanobacterial strains. J Phycol 42:1257–1270

    Article  CAS  Google Scholar 

  • Thaler M, Vincent WF, Lionard M, Hamilton AK, Lovejoy C (2017) Microbial community structure and interannual change in the last epishelf lake ecosystem in the North Polar Region. Front Mar Sci 3:275

    Article  Google Scholar 

  • Van Horn DJ, Van Horn ML, Barret JE, Gooseff MN, Altrichter E, Geyer KM, Zeglin LH, Takacs-Vesbach CD (2013) Factors controlling soil microbial biomass and bacterial diversity and community composition in a cold desert ecosystem: Role of geographic scale. PLoS ONE 8:e66103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J (2010) Metagenomic profiling of Arctic microbial mat communities as nutrient scavenging and recycling systems. Limnol Oceanogr 55:1901–1911

    Article  CAS  Google Scholar 

  • Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J (2012) Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Appl Environ Microbiol 78:549–559

    Article  PubMed  PubMed Central  Google Scholar 

  • Veillette J, Martineau M-J, Antoniades D, Sarrazin D, Vincent WF (2011) Effects of loss of perennial lake ice on mixing and phytoplankton dynamics: Insights from High Arctic Canada. Ann Glaciol 51:56–70

    Article  Google Scholar 

  • Velázques D, Jungblut AD, Rochera C, Camacho A, Quesada A, Rico E (2017) Seasonal dynamics and trophic interactions of a microbial mat in maritime Antarctic. Polar Biol. doi:10.1007/s00300-016-2039-2

    Google Scholar 

  • Vincent WF (1988) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge, 304 pp

    Google Scholar 

  • Vincent WF (2000a) Cyanobacterial dominance in the polar regions. In: Whitton BA, Potts M (eds) The ecology of Cyanobacteria. Kluwers Academic Press, Dordrecht, pp 321–340

    Google Scholar 

  • Vincent WF (2000b) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct Sci 12:374–385

    Article  Google Scholar 

  • Vincent WF (2007) Cold tolerance in cyanobacteria and life in the cryosphere. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Heidelberg, pp 287–301

    Chapter  Google Scholar 

  • Vincent WF, Howard-Williams C (2000) Life on snowball Earth. Science 287:2421v

    Article  Google Scholar 

  • Vincent WF, Quesada A (2012) Cyanobacteria in high latitude lakes, rivers and seas. In: Whitton BA (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer, New York, NY, pp 371–385

    Chapter  Google Scholar 

  • Vincent WF, Castenholz RW, Downes MT, Howard-Williams C (1993) Antarctic cyanobacteria: light, nutrients, and photosynthesis on the microbial mat environments. J Phycol 29:745–755

    Article  Google Scholar 

  • Vincent WF, Mueller D, Van Hove P, Howard-Williams C (2004a) Glacial periods on early Earth and implications for the evolution of life. In: Seckbach J (ed) Origins: genesis, evolution and diversity of life. Kluwer Academic Publishers, Dordrecht, pp 481–501

    Google Scholar 

  • Vincent WF, Mueller DR, Bonilla S (2004b) Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the High Arctic. Cryobiology 48:103–112

    Article  PubMed  Google Scholar 

  • Vopel K, Hawes I (2006) Photosynthetic performance of benthic microbial mats in Lake Hoare, Antarctica. Limnol Oceanogr 51:1801–1812

    Article  Google Scholar 

  • Wait BR, Webster-Brown JG, Brown KR, Healy M, Hawes I (2006) Chemistry and stratification of Antarctic meltwater ponds I: coastal ponds near Bratina Island, McMurdo Ice Shelf. Antarct Sci 18:515–524

    Article  Google Scholar 

  • Waleron M, Waleron K, Vincent WF, Wilmotte A (2007) Allochthonous inputs of riverine picocyanobacteria to coastal waters in the Arctic Ocean. FEMS Microbiol Ecol 59:356–365

    Article  CAS  PubMed  Google Scholar 

  • Warren-Rhodes KA, Rhodes KL, Boyle LN, Pointing SB, Chen Y et al (2007) Cyanobacterial ecology across environmental gradients and spatial scales in China’s hot and cold deserts. FEMS Microbiol Ecol 61:470–482

    Article  CAS  PubMed  Google Scholar 

  • Webster-Brown JG, Hawes I, Jungblut AD, Wood SA, Christenson HK (2015) The effects of entombment on water chemistry and bacterial assemblages in closed cryoconite holes on Antarctic glaciers. FEMS Microbiol Ecol 91:fiv144

    Article  PubMed  Google Scholar 

  • Wharton RA, McKay CP, Simmons GM, Parker BC (1985) Cryoconite holes on glaciers. Bioscience 35:499–503

    Article  PubMed  Google Scholar 

  • Wilmotte A, Demonceau C, Goffart A, Hecq J-H, Demoulin V, Crossley AC (2002) Molecular and pigment studies of the picophytoplankton in a region of Southern Ocean (42-54°S, 141-144°E) in March 1998. Deep-Sea Res II 49:3351–3363

    Article  CAS  Google Scholar 

  • Wood SA, Mountfort D, Selwood AI, Holland PT, Puddick J, Cary SC (2008) Widespread distribution and identification of eight novel microcystins in Antarctic cyanobacterial mats. Appl Environ Microbiol 74:7243–7251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Jungblut AD, Hawes I, Andersen DT, Sumner DY, Mackey TJ (2015) Cyanobacterial diversity in benthic mats of the McMurdo Dry Valley lakes, Antarctica. Polar Biol 38:1097–1110

    Article  Google Scholar 

Download references

Acknowledgements

We thank our funding support including from the Natural History Museum, the Centre d’études nordiques (CEN), the Natural Sciences and Research Council of Canada (NSERC) and the Network of Centres of Excellence ArcticNet and our logistics support in the polar regions from Polar Continental Shelf Program (Canada), British Antarctic Survey, Antarctica New Zealand and the US Antarctic Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne D. Jungblut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jungblut, A.D., Vincent, W.F. (2017). Cyanobacteria in Polar and Alpine Ecosystems. In: Margesin, R. (eds) Psychrophiles: From Biodiversity to Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-57057-0_9

Download citation

Publish with us

Policies and ethics