Cyanobacteria in Polar and Alpine Ecosystems

  • Anne D. JungblutEmail author
  • Warwick F. Vincent


Cyanobacteria are commonly found in freshwaters, soils and glacial environments in polar and alpine regions. Studies to date indicate these cold-dwelling phototrophs are psychrotolerant rather than psychrophilic, with temperature optima for growth that lie well above the temperature ranges of their ambient environment. Cyanobacterial mats occur at the bottom of lakes, ponds and streams and within meltwater habitats on glaciers and ice shelves. They can accumulate large biomass stocks and may account for the dominant fraction of total ecosystem productivity in such environments. Certain taxa in these benthic communities are known to produce cyanotoxins, including microcystins. Planktonic cyanobacteria are also found in many high latitude lakes, specifically picocyanobacteria, but they are conspicuously absent or poorly represented in polar seas, probably as a result of their minimal growth rates in extreme cold. Cyanobacteria also occur in a variety of nonaquatic habitats in the cold regions, including on and within rocks, and as a major constituent of soil crusts in polar and alpine deserts. The nitrogen-fixing capabilities of some cyanobacteria make them especially important for the natural enrichment of soils that have been newly exposed after glacial retreat. The evolution and biogeography of cyanobacterial ecotypes in the cold biosphere is a current focus of genomic analysis and pole-to-pole comparisons, and these studies are providing insights into how microbial ecosystems survived prolonged periods of cold and freeze-up on early Earth.



We thank our funding support including from the Natural History Museum, the Centre d’études nordiques (CEN), the Natural Sciences and Research Council of Canada (NSERC) and the Network of Centres of Excellence ArcticNet and our logistics support in the polar regions from Polar Continental Shelf Program (Canada), British Antarctic Survey, Antarctica New Zealand and the US Antarctic Program.


  1. Andersen DT, Sumner DY, Hawes I, Webster-Brown J, Mackay CP (2011) Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology 9:280–293PubMedCrossRefGoogle Scholar
  2. Archer SDJ, McDonald IR, Herbold CW, Lee CK, Cary CS (2015) Benthic microbial communities of coastal terrestrial and ice shelf Antarctic meltwater ponds. Front Microbiol 6:485PubMedPubMedCentralCrossRefGoogle Scholar
  3. Baas-Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. van Stockum WP, Zoon NV, The HagueGoogle Scholar
  4. Bahl J, Lau MCY, Smith GJD, Vijaykrishna D, Cary C, Lacap DC, Lee CK, Papke RT, Warren-Rhodes KA, Wong FKY, McKay CP, Pointing SB (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163PubMedPubMedCentralCrossRefGoogle Scholar
  5. Blais M, Tremblay J-É, Jungblut AD, Gagnon J, Martin J, Thaler M, Lovejoy C (2012) Nitrogen fixation and identification of potential diazotrophs in the Canadian Arctic. Glob Biogeochem Cycles 26:GB3022. doi: 10.1029/2011GB004096 CrossRefGoogle Scholar
  6. Bonilla S, Villeneuve V, Vincent WF (2005) Benthic and planktonic algal communities in a high arctic lake: pigment structure and contrasting responses to nutrient enrichment. J Phycol 41:1120–1130CrossRefGoogle Scholar
  7. Cameron KA, Hodson AJ, Osborn AM (2012) Structure and diversity of bacteria, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS Microbiol Ecol 91:254–267CrossRefGoogle Scholar
  8. Cary SC, McDonald IR, Barrett JE, Coawn DA (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8:129–138PubMedCrossRefGoogle Scholar
  9. Castenholz RW (1992) Species usage, concept, and evolution in the Cyanobacteria (blue-green algae). J Phycol 28:737–745CrossRefGoogle Scholar
  10. Castenholz RW (2001) Phylum BX. Cyanobacteria. Oxygenic photosynthetic bacteria. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology (the archaea and the deeply branching and phototrophic bacteria), vol 1. Springer, New York, NY, pp 473–599CrossRefGoogle Scholar
  11. Castenholz RW, Garcia-Pichel F (2000) Cyanobacterial responses to UV-radiation. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 591–611Google Scholar
  12. Chen M, Scheer H (2013) Extending the limits of natural photosynthesis and implications for technical light harvesting. J Porphyrins Phthalocyanines 17:1–15CrossRefGoogle Scholar
  13. Chan Y, Van Nostrand JD, Zhou J, Pointing SB, Farrell RL (2013) Proc Natl Acad Sci USA 110:8990–8995Google Scholar
  14. Chorus I, Bartram J (1999) Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management. World Health Organization, LondonCrossRefGoogle Scholar
  15. Chrismas N, Anesio AM, Sanches-Baracaldo P (2015) Multiple adaptations to polar and alpine environments within cyanobacteria: a phylogenomic and Bayesian approach. Front Microbiol 6:1070PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chrismas N, Barker G, Anesio AM, Sanches-Baracaldo P (2016) Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium Phormidesmis priestleyi BC1401. BMC Genom 17:533CrossRefGoogle Scholar
  17. Christner BC, Kvitoko BH, Reeve JN (2003) Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183PubMedGoogle Scholar
  18. Cockell CS, Stokes MD (2004) Widespread colonization by polar hypoliths. Nature 431:414PubMedCrossRefGoogle Scholar
  19. Comeau AM, Li WKW, Tremblay J-E, Carmack EC, Lovejoy C (2011) Changes in Arctic Ocean microbial community structure following the 2007 record sea ice minimum. PLoS ONE 6:e27492PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cook JM, Edwards A, Takeuchi N, Irvine-Fynn TDL (2015) Cryoconite: the dirty biological secret of the cryosphere. Prog Phys Geogr 40:66–111CrossRefGoogle Scholar
  21. Cowan DA, Khan N, Pointin SB, Cary SG (2010) Diversity of hypolithic refuge communities in the McMurdo Dry Valleys. Antarct Sci 22:714–720CrossRefGoogle Scholar
  22. de los Ríos A, Grube M, Sancho LG, Ascaso C (2007) Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol 59:386–395PubMedCrossRefGoogle Scholar
  23. de los Ríos A, Ascaso C, Wierzchos J, Vincent WF, Quesada A (2015) Microstructure and cyanobacterial composition of microbial mats from the High Arctic. Biodivers Conserv 24:841–886CrossRefGoogle Scholar
  24. DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072PubMedPubMedCentralCrossRefGoogle Scholar
  25. Edwards A, Anesio AM, Rassner SM et al (2011) Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME J 5:150–160PubMedCrossRefGoogle Scholar
  26. Edwards A, Mur LAJ, Girdwood SE et al (2014) Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers. FEMS Microbiol Ecol 89:222–237PubMedCrossRefGoogle Scholar
  27. Elster J, Syobody J, Komárek J, Marvan P (1997) Algal and cyanoprocaryote communities in a glacial stream, Sverdrup Pass, 79N, Central Ellesmere Island, Canada. Arch Hydrobiol Suppl 119:57–93Google Scholar
  28. Fernandez-Valiente E, Camacho A, Rochera C, Rico E, Vincent WF, Quesada A (2007) Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). FEMS Microbiol Ecol 59:377–385PubMedCrossRefGoogle Scholar
  29. Fewer D, Friedl T, Büdel B (2002) Chroococcidiopsis and heterocyst-differentiating cyanobacteria are each other’s closest living relatives. Mol Phylogenet Evol 23:82–90PubMedCrossRefGoogle Scholar
  30. Foreman CM, Sattler B, Mikucki J et al (2007) Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. J Geophys Res 112:1–11CrossRefGoogle Scholar
  31. Fouilland E, Descolas-Gros C, Courties C, Pons V (1999) Autotrophic carbon assimilation and biomass from size-fractionated phytoplankton in the surface waters across the subtropical frontal zone (Indian Ocean). Polar Biol 21:90–96CrossRefGoogle Scholar
  32. Friedmann EI, Ocampo R (1976) Endolithic blue-green algae in the Dry Valleys: primary producers in the Antarctic ecosystem. Science 193:1247–1249PubMedCrossRefGoogle Scholar
  33. Geitler L (1932) Cyanophyceae. In: Kolkwitz R (ed) Rabenhorst’s Kryptogamenflora von Deutschland, Osterreich und der Schweiz. Akademische Verlagsgesellschaft, LeibzigGoogle Scholar
  34. Gokul JK, Hodson AJ, Saetnan ER, Irvine-Fynn TDL, Westall PJ, Detheride AP, Takeychi N, Bussell J, Mur LAJ, Edwards E (2016) Taxon interactions control the distributions of cryoconite bacteria colonizing a High Arctic ice cap. Mol Ecol 25:3752–3767PubMedCrossRefGoogle Scholar
  35. Green WJ, Angle MP, Chave KE (1988) The geochemistry of Antarctic streams and their role in the evolution of four lakes of the McMurdo Dry Valleys. Geochim Cosmochim Acta 52:1265–1274CrossRefGoogle Scholar
  36. Harding T, Jungblut AD, Lovejoy C, Vincent WF (2011) Microbes in High Arctic snow and implications for the cold biosphere. Appl Environ Microbiol 77:3234–3243PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hawes I, Schwarz AM (2001) Absorption and utilization of irradiance by cyanobacterial mats in two ice-covered Antarctic lakes with contrasting light climates. J Phycol 37:5–15CrossRefGoogle Scholar
  38. Hawes I, Howard-Williams C, Pridmore RD (1993) Environmental control of microbial biomass in the ponds of the McMurdo Ice Shelf, Antarctica. Arch Hydrobiol 127:271–287Google Scholar
  39. Hawes I, Sumner DY, Andersen DT, Mackey TJ (2011) Legacies of recent environmental change in the benthic communities of Lake Joyce, a perennially ice-covered Antarctic lake. Geobiology 9:394–410PubMedCrossRefGoogle Scholar
  40. Hitzfeld B, Lampert CS, Spaeth N, Mountfort D, Kaspar H, Dietrich DR (2000) Toxin production in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Toxicon 38:1731–1748PubMedCrossRefGoogle Scholar
  41. Hodson A, Cameron K, Bøggild C et al (2010) The structure, biogeochemistry and formation of cryoconite aggregates upon an Arctic valley glacier; Longyearbreen, Svalbard. J Glaciol 56:349–362CrossRefGoogle Scholar
  42. Hoffman PF (2016) Cryoconite pans on Snowball Earth: supraglacial oases for Cryogenian eukaryotes? Geobiology 14:531–542PubMedCrossRefGoogle Scholar
  43. Hoffmann L, Komárek J, Kaštovský J (2005a) System of cyanoprokaryotes (cyanobacteria) – state in 2004. Algol Stud 117:95–115CrossRefGoogle Scholar
  44. Hoffmann L, Komárek J, Kaštovský J (2005b) Proposal of cyanobacterial system – 2004. In: Büdel B, Krienitz L, Gärtner G, Schagerl M (eds) Süsswasserflora von Mitteleuropa 19/2. Elsevier/Spektrum, Heidelberg, pp 657–660Google Scholar
  45. Howard-Williams C, Pridmore RD, Downes MT, Vincent WF (1989) Microbial biomass, photosynthesis and chlorophyll a related pigments in the ponds of the McMurdo Ice Shelf, Antarctica. Antarct Sci 1:125–131CrossRefGoogle Scholar
  46. Janatková K, Řeháková K, Doležal J, Šimek M, Chlumská Z, Dvorský M, Kopecký M (2013) Community structure of soil phototrophs along environmental gradients in arid Himalaya. Environ Microbiol 15:2505–2516PubMedCrossRefGoogle Scholar
  47. Jancusova M, Kovacik L, Batista Periera A, Dusinsky R, Wilmotte A (2016) Polyphasic characterization of 10 selected ecologically relevant filamentous cyanobacterial strains from the South Shetland Islands, Maritime Antarctica. FEMS Microbiol Ecol 92:fiw100PubMedCrossRefGoogle Scholar
  48. Jungblut AD, Neilan BA (2010) NifH-gene diversity and expression in a microbial mat community on the McMurdo Ice Shelf, Antarctica. Antarct Sci 22:177–122CrossRefGoogle Scholar
  49. Jungblut AD, Hawes I, Mountfort D, Hitzfeld B, Dietrich DR, Burns BP, Neilan BA (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ Microbiol 7:519–529PubMedCrossRefGoogle Scholar
  50. Jungblut AD, Hoeger SJ, Mountford D, Hitzfeld BC, Dietrich DR, Neilan BA (2006) Characterization of microcystin production in an Antarctic cyanobacterial mat community. Toxicon 47:271–278PubMedCrossRefGoogle Scholar
  51. Jungblut AD, Lovejoy C, Vincent WF (2010) Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 4:191–202PubMedCrossRefGoogle Scholar
  52. Jungblut AD, Wood SA, Hawes I, Webster-Brown J, Harris C (2012) The Pyramid Trough Wetland: environmental and biological diversity in a newly created Antarctic protected area. FEMS Microbiol Ecol 82:356–366PubMedCrossRefGoogle Scholar
  53. Jungblut AD, Hawes I, Mackey TJ, Krusor M, Doran PT, Sumner DY, Eisen JA, Hillman C, Goroncy AK (2016) Microbial mat communities along an oxygen gradient in a perennially ice-covered Antarctic lake. Appl Environ Microbiol 82:620–630PubMedCentralCrossRefGoogle Scholar
  54. Jungblut AD, Mueller D, Vincent WF (2017) Arctic ice shelf ecosystems. In: Copland L, Mueller DR (eds) Arctic Ice Shelves and Ice Islands. Springer SBM, DordrechtGoogle Scholar
  55. Kaebernick M, Neilan BA (2001) Ecological and molecular investigations of cyanotoxin production. FEMS Microbiol Ecol 35:1–9PubMedCrossRefGoogle Scholar
  56. Khan N, Tuffin M, Stafford W, Cary C, Lacap DC, Pointing SB et al (2011) Hypolithic microbial communities of quartz rocks from Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biol 34:1657–1668CrossRefGoogle Scholar
  57. Kleinteich J, Wood SA, Kupper FC, Camacho A, Quesada A, Frickey T, Dietrich DR (2012) Temperature-related changes in polar cyanobacterial mat diversity and toxin production. Nat Clim Chang 2:356–360CrossRefGoogle Scholar
  58. Kleinteich J, Wood SA, Puddick J, Schleheck D, Kupper FC, Dietrich D (2013) Potent toxins in Arctic environments: presence of saxitoxins and an unusual microcystin variant in Arctic freshwater ecosystems. Chem Biol Interact 206:423–431PubMedCrossRefGoogle Scholar
  59. Kleinteich J, Hildebrand F, Wood SA, Cirs S, Agha R, Quesada A, Pearce D, Convey P, Küpper F, Dietrich DR (2014) Diversity of toxin and non-toxin containing cyanobacterial mats of meltwater ponds on the Antarctic Peninsula: a pyrosequencing approach. Antarct Sci 26:521–532CrossRefGoogle Scholar
  60. Koh EY, Cowie ROM, Simpson AM, O’Toole R, Ryan KG (2012) The origin of cyanobacteria in Antarctic sea ice: marine or freshwater? Environ Microbiol Rep 4:479–483PubMedCrossRefGoogle Scholar
  61. Komárek J, Anagnostidis K (2005) Cyanoprokaryota 2. Teil Oscillatoriales. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  62. Komárek J, Nedbalová L, Hauer T (2012) Phylogenetic position and taxonomy of three heterocytous cyanobacteria dominating the littoral of deglaciated lakes, James Ross Island, Antarctica. Polar Biol 35:759–774CrossRefGoogle Scholar
  63. Komárek J, Kaštovský J, Mareš J, Johansen JR (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86:295–335Google Scholar
  64. Langford H, Hodson A, Banwart S, Bøggild C (2010) The microstructure and biogeochemistry of Arctic cryoconite granules. Ann Glaciol 51:87–94CrossRefGoogle Scholar
  65. Leslie A (1879) The Arctic voyages of Adolf Erik Nordenskiöld. MacMillan, LondonGoogle Scholar
  66. Lionard M, Péquin B, Lovejoy C, Vincent WF (2012) Benthic cyanobacterial mats in the High Arctic: multi-layer structure and fluorescence responses to osmotic stress. Front Aquat Microbiol 3:140Google Scholar
  67. Mackey TJ, Sumner DY, Hawes I, Jungblut A-D, Andersen DT (2015) Branched stromatolites in Lake Joyce, Antarctica. Geobiology 13:373–390PubMedCrossRefGoogle Scholar
  68. Magalhaes C, Stevens MI, Cary SC, Ball BA, Storey BC, Wall DH, Tuerk R, Ruprecht U (2012) At limits of life: multidisciplinary insights reveal environmental constraints on biotic diversity in continental Antarctica. PLoS ONE 7:e44578PubMedPubMedCentralCrossRefGoogle Scholar
  69. Makhalanyane TP, Valverde A, Lacap DC, Pointing SB, Tuffin M, Cowan DA (2013) Evidence of species recruitment and development of hot desert hypolithic communities. Environ Microbiol Rep 5:219–224PubMedCrossRefGoogle Scholar
  70. Marchant HJ (2005) Cyanophytes. In: Scott FJ, Marchant HJ (eds) Antarctic marine protists. Australian Biological Resources Study, Canberra, pp 324–325Google Scholar
  71. Marchant HJ, Davidson AT, Wright SW (1987) The distribution and abundance of chroococcoid cyanobacteria in the Southern Ocean. Proc NIPR Symp Polar Biol 1:1–9Google Scholar
  72. Margesin R, Häggblom M (2007) Thematic issue: microorganisms in cold environments. FEMS Microbiol Ecol 59:215–216CrossRefGoogle Scholar
  73. Martineau E, Wood SA, Miller MR, Jungblut AD, Hawes I, Webster-Brown J, Packer MA (2013) Characterisation of Antarctic cyanobacteria and comparison with New Zealand strains. Hydrobiology 711:139–154CrossRefGoogle Scholar
  74. McClintic AS, Casamatta DA, Vis ML (2003) A survey of algae from montane cloud forest and alpine streams in Bolivia: macroalgae and associated microalgae. Nova Hedwigia 76:363–379CrossRefGoogle Scholar
  75. Mez K, Hanselmann K, Preisig HR (1998) Environmental conditions in high mountain lakes containing toxic benthic cyanobacteria. Hydrobiologia 368:1–15CrossRefGoogle Scholar
  76. Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyashi S (1996) Chlorophyll d as a major pigment. Nature 383:402CrossRefGoogle Scholar
  77. Moffitt CM, Neilan AB (2004) Characterization of the nodularin synthetase gene cluster and proposed evolution of cyanobacterial hepatotoxins. Appl Environ Microbiol 70:6353–6362PubMedPubMedCentralCrossRefGoogle Scholar
  78. Mueller DR, Vincent WF, Jeffries MO (2003) Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophys Res Lett 30:2031CrossRefGoogle Scholar
  79. Mueller DR, Copland L, Hamilton A, Stern DR (2008) Examining Arctic ice shelves prior to 2008 breakup. EOS Trans Am Geophys Union 89:502–503CrossRefGoogle Scholar
  80. Murray J (1910) British Antarctic expedition 1907–1909. Reports on the scientific investigations. Biology 1(Part V):83–187Google Scholar
  81. Nadeau TL, Milbrandt EC, Castenholz RW (2001) Evolutionary relationships of cultivated Antarctic Oscillatoriaceans (cyanobacteria). J Phycol 37:650–654CrossRefGoogle Scholar
  82. Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2007) Microbial community succession in an unvegetated, recently deglaciated soil. Microb Ecol 53:110–122PubMedCrossRefGoogle Scholar
  83. Niederberger TD, Sohm JA, Gunderson TE, Parker AE, Tirindelli J, Capone DG, Carpenter EK, Cary SC (2015) Microbial community composition of transiently wetted Antarctic Dry Valley soils. Front Microbiol 6:9PubMedPubMedCentralGoogle Scholar
  84. Novis PM, Smissen RD (2006) Two genetic and ecological groups of Nostoc commune in Victoria Land, Antarctia, revealed by AFLP analysis. Antarct Sci 18:573–581CrossRefGoogle Scholar
  85. Omelon CR, Pollard WH, Ferris FG (2006) Environmental controls on microbial colonization of high Arctic cryptoendolithic habitats. Polar Biol 30:19–29CrossRefGoogle Scholar
  86. Oren A (2000) Salt and brines. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Press, Dordrecht, pp 281–306Google Scholar
  87. Oren A (2004) A proposal for further integration of the cyanobacteria under the Bacteriological Code. Int J Syst Evol Microbiol 54:1895–1902PubMedCrossRefGoogle Scholar
  88. Pointing SB, Chan Y, Lacap DC, Lau MC, Jurgens JA, Farrell RL (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci U S A 106:19964–19969PubMedPubMedCentralCrossRefGoogle Scholar
  89. Pointing SB, Büdel B, Convey P, Gillman L, Körner C, Leuzinger S, Vincent WF (2015) Biogeography of photoautotrophs in the high polar biome. Front Plant Sci 6:692PubMedPubMedCentralCrossRefGoogle Scholar
  90. Porazinska DL, Fountain AG, Nylen TH et al (2004) The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley Glaciers, Antarctica. Arct Antarct Alp Res 36:84–91CrossRefGoogle Scholar
  91. Przytulska A, Bartosiewicz M, Rautio M, Dufresne F, Vincent WF (2015) Climate effects on Arctic Daphnia via food quality and thresholds. PLoS ONE 10:e0126231PubMedPubMedCentralCrossRefGoogle Scholar
  92. Quesada A, Vincent WF (2012) Cyanobacteria in the cryosphere: snow, ice and extreme cold. In: Whitton BA (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer, New York, NY, pp 387–399CrossRefGoogle Scholar
  93. Rajaniemi P, Hrouzek P, Kastovska K, Willame R, Rantala A, Hoffmann L, Komarek J, Sivonen K (2005) Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int J Syst Evol Microbiol 55:11–26PubMedCrossRefGoogle Scholar
  94. Rantala A, Fewer D, Hisburges M, Rouhiainen L, Vaitomaa J, Börner T (2004) Phylogenetic evidence for the early evolution of the microcystin synthesis. Proc Natl Acad Sci U S A 101:568–573PubMedCrossRefGoogle Scholar
  95. Rocap G, Distel DL, Waterbury JB, Chisholm SW (2002) Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiol 68(3):1180–1191PubMedPubMedCentralCrossRefGoogle Scholar
  96. Rott E, Cantonati M, Füreder L, Pfister P (2006) Benthic algae in high altitude streams of the Alps-a neglected component of the aquatic biota. Hydrobiology 562:195–216CrossRefGoogle Scholar
  97. Sabbe K, Hodgson DA, Verlyen E, Taton A, Wilmotte A, Vanhoutte KD, Vyverman W (2004) Salinity, depth and the structure and composition of microbial mats in continental Antarctic lakes. Freshw Biol 49:296–319CrossRefGoogle Scholar
  98. Säwström C, Mumford P, Marshall W, Hodson A, Laybourn-Parry J (2002) The microbial communities and primary productivity of crycoconite holes in an Arctic glacier (Svalbard 79°N). Polar Biol 25:591–596Google Scholar
  99. Schmidt SK, Reed SC, Nemergut DR, Grandy AS, Cleveland CC, Weintraub MN, Hill AW, Costello EK, Meyer AF, Neff JC, Martin AM (2008) The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proc R Soc Lond B Biol Sci 275:2793–2802CrossRefGoogle Scholar
  100. Sigler WV, Bachofen R, Zeier J (2003) Molecular characterization of endolithic cyanobacteria inhabiting exposed dolomite in central Switzerland. Environ Microbiol 5:618–627PubMedCrossRefGoogle Scholar
  101. Sommaruga R, Garcia-Pichel F (1999) UV-absorbing mycosporine-like compounds in planktonic and benthic organisms from a high-mountain lake. Arch Hydrobiol 144:255–269CrossRefGoogle Scholar
  102. Stanier RY, Sistrom WR, Hansen TA, Whitton BA, Castenholz RW, Pfennig N, Gorlenko VN, Kondratieva EN, Eimhjellen KE, Whittenbury R, Gherma RL, Trüper HG (1978) Proposal to place nomenclature of cyanobacteria (blue-green-algae) under rules of International Code of Nomenclature of Bacteria. Int J Syst Bacteriol 28:335–336CrossRefGoogle Scholar
  103. Stanish LF, O’Neil SP, Gonzales A, Legg TM, Knelman J, McKnight DM, Spaulding S, Nemergut DR (2013) Bacteria and diatom co-occurrence patterns in microbial mats from polar desert streams. Environ Microbiol 15:1115–1131PubMedCrossRefGoogle Scholar
  104. Stevens B, Lionard M, Kuske CR, Vincent WF (2013) High bacterial diversity of biological soil crusts in water tracks over permafrost in the High Arctic polar desert. PLoS ONE 8:e71489CrossRefGoogle Scholar
  105. Stibal M, Sabacká M, Kastovská K (2006) Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb Ecol 52:644–654PubMedCrossRefGoogle Scholar
  106. Stibal M, Schostag M, Cameron KA et al (2015) Different bulk and active bacterial communities in cryoconite from the margin and interior of the Greenland ice sheet. Environ Microbiol Rep 7:293–300PubMedCrossRefGoogle Scholar
  107. Stomeo F, Valverde A, Pointing SB, McKay CP, Warren-Rhodes KA, Tuffin MI et al (2013) Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert. Extremophiles 17:329–337PubMedCrossRefGoogle Scholar
  108. Strunecky O, Elster J, Komarek J (2011) Taxonomic revision of the freshwater cyanobacterium Phormidium murrayi = Wilmottia murrayi. Fottea 11:57–71CrossRefGoogle Scholar
  109. Sumner DY, Hawes I, Mackey TJ, Jungblut AD, Doran PT (2015) Antarctic microbial mats: a modern analogue for Archean lacustrine oxygen oases. Geology 43:887–890CrossRefGoogle Scholar
  110. Sumner D, Jungblut AD, Hawes I, Andersen DT, Mackey TJ, Wall K (2016) Growth of elaborate microbial pinnacles in Lake Vanda, Antarctica. Geobiology 14:556–574PubMedCrossRefGoogle Scholar
  111. Tanabe Y, Ohtan S, Kasamatsu N, Fukuchi M, Kudoh S (2010) Photophysiological responses of phytobenthic communities to the strong light and UV in Antarctic shallow lakes. Polar Biol 33:85–100CrossRefGoogle Scholar
  112. Tang EPY, Vincent WF (1999) Strategies of thermal adaptation by high latitude cyanobacteria. New Phytol 142:315–323CrossRefGoogle Scholar
  113. Tang EPY, Tremblay R, Vincent WF (1997) Cyanobacterial dominance of polar freshwater ecosystems: are high latitude mat-formers adapted to the low temperature environment? J Phycol 33:171–181CrossRefGoogle Scholar
  114. Tashyreva D, Elster J (2016) Annual cycles of two cyanobacterial mat communities in hydro-terrestrial habitats of the High Arctic. Microb Ecol 71:887–900PubMedCrossRefGoogle Scholar
  115. Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169PubMedPubMedCentralCrossRefGoogle Scholar
  116. Taton A, Grubisic S, Balhasart P, Hodgson DA, Laybourn-Parry J, Wilmotte A (2006a) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57:272–289PubMedCrossRefGoogle Scholar
  117. Taton A, Grubisic S, Ertz D, Hodgson DA, Piccardi R, Biondi N, Tredici MR, Mainini M, Losi D, Marinelli F, Wilmotte A (2006b) Polyphasic study of Antarctic cyanobacterial strains. J Phycol 42:1257–1270CrossRefGoogle Scholar
  118. Thaler M, Vincent WF, Lionard M, Hamilton AK, Lovejoy C (2017) Microbial community structure and interannual change in the last epishelf lake ecosystem in the North Polar Region. Front Mar Sci 3:275CrossRefGoogle Scholar
  119. Van Horn DJ, Van Horn ML, Barret JE, Gooseff MN, Altrichter E, Geyer KM, Zeglin LH, Takacs-Vesbach CD (2013) Factors controlling soil microbial biomass and bacterial diversity and community composition in a cold desert ecosystem: Role of geographic scale. PLoS ONE 8:e66103PubMedPubMedCentralCrossRefGoogle Scholar
  120. Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J (2010) Metagenomic profiling of Arctic microbial mat communities as nutrient scavenging and recycling systems. Limnol Oceanogr 55:1901–1911CrossRefGoogle Scholar
  121. Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J (2012) Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Appl Environ Microbiol 78:549–559PubMedPubMedCentralCrossRefGoogle Scholar
  122. Veillette J, Martineau M-J, Antoniades D, Sarrazin D, Vincent WF (2011) Effects of loss of perennial lake ice on mixing and phytoplankton dynamics: Insights from High Arctic Canada. Ann Glaciol 51:56–70CrossRefGoogle Scholar
  123. Velázques D, Jungblut AD, Rochera C, Camacho A, Quesada A, Rico E (2017) Seasonal dynamics and trophic interactions of a microbial mat in maritime Antarctic. Polar Biol. doi: 10.1007/s00300-016-2039-2 Google Scholar
  124. Vincent WF (1988) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge, 304 ppGoogle Scholar
  125. Vincent WF (2000a) Cyanobacterial dominance in the polar regions. In: Whitton BA, Potts M (eds) The ecology of Cyanobacteria. Kluwers Academic Press, Dordrecht, pp 321–340Google Scholar
  126. Vincent WF (2000b) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct Sci 12:374–385CrossRefGoogle Scholar
  127. Vincent WF (2007) Cold tolerance in cyanobacteria and life in the cryosphere. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Heidelberg, pp 287–301CrossRefGoogle Scholar
  128. Vincent WF, Howard-Williams C (2000) Life on snowball Earth. Science 287:2421vCrossRefGoogle Scholar
  129. Vincent WF, Quesada A (2012) Cyanobacteria in high latitude lakes, rivers and seas. In: Whitton BA (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer, New York, NY, pp 371–385CrossRefGoogle Scholar
  130. Vincent WF, Castenholz RW, Downes MT, Howard-Williams C (1993) Antarctic cyanobacteria: light, nutrients, and photosynthesis on the microbial mat environments. J Phycol 29:745–755CrossRefGoogle Scholar
  131. Vincent WF, Mueller D, Van Hove P, Howard-Williams C (2004a) Glacial periods on early Earth and implications for the evolution of life. In: Seckbach J (ed) Origins: genesis, evolution and diversity of life. Kluwer Academic Publishers, Dordrecht, pp 481–501Google Scholar
  132. Vincent WF, Mueller DR, Bonilla S (2004b) Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the High Arctic. Cryobiology 48:103–112PubMedCrossRefGoogle Scholar
  133. Vopel K, Hawes I (2006) Photosynthetic performance of benthic microbial mats in Lake Hoare, Antarctica. Limnol Oceanogr 51:1801–1812CrossRefGoogle Scholar
  134. Wait BR, Webster-Brown JG, Brown KR, Healy M, Hawes I (2006) Chemistry and stratification of Antarctic meltwater ponds I: coastal ponds near Bratina Island, McMurdo Ice Shelf. Antarct Sci 18:515–524CrossRefGoogle Scholar
  135. Waleron M, Waleron K, Vincent WF, Wilmotte A (2007) Allochthonous inputs of riverine picocyanobacteria to coastal waters in the Arctic Ocean. FEMS Microbiol Ecol 59:356–365PubMedCrossRefGoogle Scholar
  136. Warren-Rhodes KA, Rhodes KL, Boyle LN, Pointing SB, Chen Y et al (2007) Cyanobacterial ecology across environmental gradients and spatial scales in China’s hot and cold deserts. FEMS Microbiol Ecol 61:470–482PubMedCrossRefGoogle Scholar
  137. Webster-Brown JG, Hawes I, Jungblut AD, Wood SA, Christenson HK (2015) The effects of entombment on water chemistry and bacterial assemblages in closed cryoconite holes on Antarctic glaciers. FEMS Microbiol Ecol 91:fiv144PubMedCrossRefGoogle Scholar
  138. Wharton RA, McKay CP, Simmons GM, Parker BC (1985) Cryoconite holes on glaciers. Bioscience 35:499–503PubMedCrossRefGoogle Scholar
  139. Wilmotte A, Demonceau C, Goffart A, Hecq J-H, Demoulin V, Crossley AC (2002) Molecular and pigment studies of the picophytoplankton in a region of Southern Ocean (42-54°S, 141-144°E) in March 1998. Deep-Sea Res II 49:3351–3363CrossRefGoogle Scholar
  140. Wood SA, Mountfort D, Selwood AI, Holland PT, Puddick J, Cary SC (2008) Widespread distribution and identification of eight novel microcystins in Antarctic cyanobacterial mats. Appl Environ Microbiol 74:7243–7251PubMedPubMedCentralCrossRefGoogle Scholar
  141. Zhang L, Jungblut AD, Hawes I, Andersen DT, Sumner DY, Mackey TJ (2015) Cyanobacterial diversity in benthic mats of the McMurdo Dry Valley lakes, Antarctica. Polar Biol 38:1097–1110CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Life Sciences DepartmentNatural History MuseumLondonUK
  2. 2.Centre d’Études Nordiques (CEN)Quebec CityCanada
  3. 3.Department of BiologyLaval UniversityQuebec CityCanada

Personalised recommendations