Advertisement

Microbial Life in Permafrost

  • Ianina Altshuler
  • Jacqueline Goordial
  • Lyle G. WhyteEmail author
Chapter

Abstract

Permafrost is a hostile environment that harbors a diverse and active microbial community. Next generation sequencing studies have demonstrated a wide diversity of microorganisms present in Arctic, Antarctic and high altitude permafrost soils. In situ activity of these microorganisms has been demonstrated through multiple lines of evidence. Radiolabeled studies and stable isotope probing have established that active respiration and DNA replication occur in permafrost soils under frozen conditions. Furthermore, microorganisms capable of subzero growth have been isolated from permafrost samples. These isolates have adapted to the permafrost environment through a multitude of molecular changes, such as increased expression of cold shock and metabolite transport proteins, reduced fatty acid saturation in the membrane, and presence of temperature specific isozymes. Recent studies have focused on permafrost thaw due to anthropogenic climate change. The subsequent thaw of frozen organic carbon stores in permafrost is thought to increase microbial activity and emissions of greenhouse gases to the atmosphere. As the permafrost thaws, the microbial community changes in terms of diversity and functional potential in response to warmer temperatures, and increased carbon and water availability.

References

  1. Allan J, Ronholm J, Mykytczuk N et al (2014) Methanogen community composition and rates of methane consumption in Canadian High Arctic permafrost soils. Environ Microbiol Rep 6:136–144PubMedCrossRefGoogle Scholar
  2. Amato P, Doyle SM, Battista JR et al (2010) Implications of subzero metabolic activity on long-term microbial survival in terrestrial and extraterrestrial permafrost. Astrobiology 10:789–798PubMedCrossRefGoogle Scholar
  3. Bae S, Wuertz S (2009) Discrimination of viable and dead fecal Bacteroidales bacteria by quantitative PCR with propidium monoazide. Appl Environ Microbiol 75:2940–2944PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bai Y, Yang D, Wang J et al (2006) Phylogenetic diversity of culturable bacteria from alpine permafrost in the Tianshan Mountains, northwestern China. Res Microbiol 157:741–751PubMedCrossRefGoogle Scholar
  5. Bakermans C, Nealson KH (2004) Relationship of critical temperature to macromolecular synthesis and growth yield in Psychrobacter cryopegella. J Bacteriol 186:2340–2345PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bakermans C, Tsapin AI, Souza-Egipsy V et al (2003) Reproduction and metabolism at−10°C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326PubMedCrossRefGoogle Scholar
  7. Bakermans C, Skidmore ML, Douglas S et al (2014) Molecular characterization of bacteria from permafrost of the Taylor Valley, Antarctica. FEMS Microbiol Ecol 89:331–346PubMedCrossRefGoogle Scholar
  8. Barbier BA, Dziduch I, Liebner S et al (2012) Methane-cycling communities in a permafrost-affected soil on Herschel Island, Western Canadian Arctic: active layer profiling of mcrA and pmoA genes. FEMS Microbiol Ecol 82:287–302PubMedCrossRefGoogle Scholar
  9. Bellemain E, Davey ML, Kauserud H et al (2013) Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost. Environ Microbiol 15:1176–1189PubMedCrossRefGoogle Scholar
  10. Blanco Y, Prieto-Ballesteros O, Gómez MJ et al (2012) Prokaryotic communities and operating metabolisms in the surface and the permafrost of Deception Island (Antarctica). Environ Microbiol 14:2495–2510PubMedCrossRefGoogle Scholar
  11. Blazewicz SJ, Barnard RL, Daly RA et al (2013) Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J 7:2061–2068PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bockheim JG, Hall KJ (2002) Permafrost, active-layer dynamics and periglacial environments of continental Antarctica. S Afr J Sci 98:82–90Google Scholar
  13. Bockheim JG, Munroe JS (2014) Organic carbon pools and genesis of alpine soils with permafrost: a review. Arct Antarct Alp Res 46:987–1006CrossRefGoogle Scholar
  14. Bockheim JG, Campbell IB, Mcleod M (2007) Permafrost distribution and active-layer depths in the McMurdo Dry valleys, Antarctica. Permafr Periglac Process 18:217–227CrossRefGoogle Scholar
  15. Bockheim JG, Kurz MD, Soule SA et al (2009) Genesis of active sand-filled polygons in lower and central Beacon Valley, Antarctica. Permafr Periglac Process 20:295–308CrossRefGoogle Scholar
  16. Briggs DE, Summons RE (2014) Ancient biomolecules: their origins, fossilization, and role in revealing the history of life. BioEssays 36:482–490PubMedCrossRefGoogle Scholar
  17. Buelow HN, Winter AS, Van Horn DJ et al (2016) Microbial community responses to increased water and organic matter in the arid Soils of the McMurdo Dry Valleys, Antarctica. Front Microbiol 7:1040PubMedPubMedCentralCrossRefGoogle Scholar
  18. Campbell IB, Claridge GG (2006) Permafrost properties, patterns and processes in the Transantarctic Mountains region. Permafr Periglac Process 17:215–232CrossRefGoogle Scholar
  19. Campbell IB, Claridge GG (2009) Antarctic permafrost soils. In: Margesin R (ed) Permafrost soils, Springer, Heidelberg, pp 17-31Google Scholar
  20. Carini P, Marsden PJ, Leff JW, et al (2016) Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. bioRxiv:043372Google Scholar
  21. Chen L, Liang J, Qin S et al (2016) Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nat Commun 7:13046PubMedPubMedCentralCrossRefGoogle Scholar
  22. Christiansen JR, Romero AJB, Jørgensen NO et al (2015) Methane fluxes and the functional groups of methanotrophs and methanogens in a young Arctic landscape on Disko Island, West Greenland. Biogeochemistry 122:15–33CrossRefGoogle Scholar
  23. Conrad R (2007) Microbial ecology of methanogens and methanotrophs. Adv Agron 96:1–63CrossRefGoogle Scholar
  24. Coolen MJ, Orsi WD (2015) The transcriptional response of microbial communities in thawing Alaskan permafrost soils. Front Microbiol 6:197PubMedPubMedCentralCrossRefGoogle Scholar
  25. D'Amico S, Collins T, Marx JC et al (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389PubMedPubMedCentralCrossRefGoogle Scholar
  26. De Maayer P, Anderson D, Cary C et al (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15:508–517PubMedPubMedCentralCrossRefGoogle Scholar
  27. Deng J, Gu Y, Zhang J et al (2015) Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in Alaska. Mol Ecol 24:222–234PubMedCrossRefGoogle Scholar
  28. Elberling B, Brandt KK (2003) Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies of arctic C cycling. Soil Biol Biochem 35:263–272CrossRefGoogle Scholar
  29. Elberling B, Christiansen HH, Hansen BU (2010) High nitrous oxide production from thawing permafrost. Nat Geosci 3:332–335CrossRefGoogle Scholar
  30. Emmerton CA, St Louis V, Lehnherr I et al (2014) The net exchange of methane with high Arctic landscapes during the summer growing season. Biogeosciences 11:3095–3106CrossRefGoogle Scholar
  31. Eriksson M, Ka J-O, Mohn WW (2001) Effects of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in Arctic tundra soil. Appl Environ Microbiol 67:5107–5112PubMedPubMedCentralCrossRefGoogle Scholar
  32. Ernakovich JG, Wallenstein MD (2015) Permafrost microbial community traits and functional diversity indicate low activity at in situ thaw temperatures. Soil Biol Biochem 87:78–89CrossRefGoogle Scholar
  33. Etzelmüller B (2013) Recent advances in mountain permafrost research. Permafr Periglac Process 24:99–107CrossRefGoogle Scholar
  34. Fahnestock JT, Jones MH, Welker JM (1999) Wintertime CO2 efflux from arctic soils: implications for annual carbon budgets. Glob Biogeochem Cycles 13:775–779CrossRefGoogle Scholar
  35. Finster KW, Herbert RA, Kjeldsen KU et al (2009) Demequina lutea sp. nov. isolated from a high Arctic permafrost soil. Int J Syst Evol Microbiol 59:649–653PubMedCrossRefGoogle Scholar
  36. Frey B, Rime T, Phillips M et al (2016) Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol Ecol 92:fiw018PubMedCrossRefGoogle Scholar
  37. Ganzert L, Jurgens G, Münster U et al (2007) Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol Ecol 59:476–488PubMedCrossRefGoogle Scholar
  38. Gilichinsky D, Wagener S, Vishnevetskaya T (1995) Permafrost microbiology. Permafr Periglac Process 6:281–291CrossRefGoogle Scholar
  39. Gilichinsky D, Rivkina E, Shcherbakova V et al (2003) Supercooled water brines within permafrost-an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3:331–341PubMedCrossRefGoogle Scholar
  40. Gilichinsky D, Wilson G, Friedmann E et al (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7:275–311PubMedCrossRefGoogle Scholar
  41. Gittel A, Bárta J, Kohoutová I et al (2014a) Distinct microbial communities associated with buried soils in the Siberian tundra. ISME J 8:841–853PubMedCrossRefGoogle Scholar
  42. Gittel A, Bárta J, Kohoutová I et al (2014b) Site-and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland. Front Microbiol 5:541PubMedPubMedCentralCrossRefGoogle Scholar
  43. Goordial J, Lamarche-Gagnon G, Lay C-Y, Whyte LG (2013) Left out in the cold: life in cryoenvironments. In: Seckbach J, Oren A, StanLotter H (eds) Polyextremophiles, vol 27, Cellular origin, life in extreme habitats and astrobiology. Springer, Amsterdam, pp 335–363CrossRefGoogle Scholar
  44. Goordial J, Whyte L (2014) Microbial life in Antarctic permafrost environments. In: Cowan D (ed) Antarctic terrestrial microbiology. Springer, Heidelberg, pp 217–232CrossRefGoogle Scholar
  45. Goordial J, Davila A, Lacelle D et al (2016) Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. ISME J 10:1613–1624PubMedPubMedCentralCrossRefGoogle Scholar
  46. Graham DE, Wallenstein MD, Vishnivetskaya TA et al (2012) Microbes in thawing permafrost: the unknown variable in the climate change equation. ISME J 6:709–712PubMedCrossRefGoogle Scholar
  47. Guy PL (2014) Prospects for analyzing ancient RNA in preserved materials. Wiley Interdiscip Rev RNA 5:87–94PubMedCrossRefGoogle Scholar
  48. Haeberli W, Gruber S (2009) Global warming and mountain permafrost. In: Margesin R (ed) Permafrost soils. Springer, Heidelberg, pp 205–218CrossRefGoogle Scholar
  49. Hansen AA, Herbert RA, Mikkelsen K et al (2007) Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway. Environ Microbiol 9:2870–2884PubMedCrossRefGoogle Scholar
  50. Hansen AJ, Mitchell DL, Wiuf C et al (2006) Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments. Genetics 173:1175–1179PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471PubMedPubMedCentralGoogle Scholar
  52. Hebsgaard MB, Willerslev E (2009) Very old DNA. In: Margesin R (ed) Permafrost soils. Springer, Heidelberg, pp 47–57CrossRefGoogle Scholar
  53. Hu W, Zhang Q, Tian T et al (2015) The microbial diversity, distribution, and ecology of permafrost in China: a review. Extremophiles 19:693–705PubMedCrossRefGoogle Scholar
  54. Hu W, Zhang Q, Tian T et al (2016) Characterization of the prokaryotic diversity through a stratigraphic permafrost core profile from the Qinghai-Tibet Plateau. Extremophiles 20:337–349PubMedCrossRefGoogle Scholar
  55. Hugelius G, Kuhry P (2009) Landscape partitioning and environmental gradient analyses of soil organic carbon in a permafrost environment. Glob Biogeochem Cycles 23:GB3006CrossRefGoogle Scholar
  56. Hultman J, Waldrop MP, Mackelprang R et al (2015) Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521:208–212PubMedCrossRefGoogle Scholar
  57. Jansson JK, Taş N (2014) The microbial ecology of permafrost. Nat Rev Microbiol 12:414–425PubMedCrossRefGoogle Scholar
  58. Johansson T, Malmer N, Crill PM et al (2006) Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing. Glob Chang Biol 12:2352–2369CrossRefGoogle Scholar
  59. Johnson SS, Hebsgaard MB, Christensen TR et al (2007) Ancient bacteria show evidence of DNA repair. PNAS 104:14401–14405PubMedPubMedCentralCrossRefGoogle Scholar
  60. Katayama T, Tanaka M, Moriizumi J et al (2007) Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25,000 years. Appl Environ Microbiol 73:2360–2363PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kerfoot DE (1972) Thermal contraction cracks in an arctic tundra environment. Arctic 25:142–150CrossRefGoogle Scholar
  62. Kim SJ, Shin SC, Hong SG et al (2012) Genome sequence of a novel member of the genus Psychrobacter isolated from Antarctic soil. J Bacteriol 194:2403–2403PubMedPubMedCentralCrossRefGoogle Scholar
  63. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334PubMedCrossRefGoogle Scholar
  64. Koh HY, Park H, Lee JH et al (2016) Proteomic and transcriptomic investigations on cold-responsive properties of the psychrophilic Antarctic bacterium sp. PAMC 21119 at subzero temperatures. Environ Microbiol. doi: 10.1111/1462-2920.13578 PubMedGoogle Scholar
  65. Kokelj S, Burn C (2005) Geochemistry of the active layer and near Psychrobacter-surface permafrost, Mackenzie delta region, Northwest Territories, Canada. Can J Earth Sci 42:37–48CrossRefGoogle Scholar
  66. Lacelle D, Radtke K, Clark ID et al (2011) Geomicrobiology and occluded O2–CO2–Ar gas analyses provide evidence of microbial respiration in ancient terrestrial ground ice. Earth Planet Sci Lett 306:46–54CrossRefGoogle Scholar
  67. Larsen KS, Jonasson S, Michelsen A (2002) Repeated freeze–thaw cycles and their effects on biological processes in two arctic ecosystem types. Appl Soil Ecol 21:187–195CrossRefGoogle Scholar
  68. Lau M, Stackhouse B, Layton A et al (2015) An active atmospheric methane sink in high Arctic mineral cryosols. ISME J 9:1880–1891PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715PubMedCrossRefGoogle Scholar
  70. Mackelprang R, Waldrop MP, Deangelis KM et al (2011) Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480:368–371PubMedCrossRefGoogle Scholar
  71. Mackelprang R, Saleska SR, Jacobsen CS et al (2016) Permafrost meta-omics and climate change. Annu Rev Earth Planet Sci 44:439–462CrossRefGoogle Scholar
  72. Marinova MM, Mckay CP, Pollard WH et al (2013) Distribution of depth to ice-cemented soils in the high-elevation Quartermain Mountains, McMurdo Dry Valleys, Antarctica. Antarct Sci 25:575–582CrossRefGoogle Scholar
  73. Marushchak M, Pitkämäki A, Koponen H et al (2011) Hot spots for nitrous oxide emissions found in different types of permafrost peatlands. Glob Chang Biol 17:2601–2614CrossRefGoogle Scholar
  74. Mccalley CK, Woodcroft BJ, Hodgkins SB et al (2014) Methane dynamics regulated by microbial community response to permafrost thaw. Nature 514:478–481PubMedCrossRefGoogle Scholar
  75. Michaelson G, Ping C (2003) Soil organic carbon and CO2 respiration at subzero temperature in soils of Arctic Alaska. J Geophys Res 108:8164CrossRefGoogle Scholar
  76. Mondav R, Woodcroft BJ, Kim E-H et al (2014) Discovery of a novel methanogen prevalent in thawing permafrost. Nat Commun 5:3212PubMedCrossRefGoogle Scholar
  77. Mu C, Zhang T, Zhang X et al (2016) Sensitivity of soil organic matter decomposition to temperature at different depths in permafrost regions on the northern Qinghai-Tibet Plateau. Eur J Soil Sci 67:773–781CrossRefGoogle Scholar
  78. Mykytczuk NC, Foote SJ, Omelon CR et al (2013) Bacterial growth at−15°C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J 7:1211–1226PubMedPubMedCentralCrossRefGoogle Scholar
  79. Nikrad MP, Kerkhof LJ, Häggblom MM (2016) The subzero microbiome: Microbial activity in frozen and thawing soils. FEMS Microbiol Ecol 92:fiw081PubMedCrossRefGoogle Scholar
  80. Öquist MG, Sparrman T, Klemedtsson L et al (2009) Water availability controls microbial temperature responses in frozen soil CO2 production. Glob Chang Biol 15:2715–2722CrossRefGoogle Scholar
  81. Panikov NS, Dedysh S (2000) Cold season CH4 and CO2 emission from boreal peat bogs (West Siberia): Winter fluxes and thaw activation dynamics. Glob Biogeochem Cycles 14:1071–1080CrossRefGoogle Scholar
  82. Panikov NS, Sizova MV (2007) Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to -35°C. FEMS Microbiol Ecol 59:500–512PubMedCrossRefGoogle Scholar
  83. Panikov N, Flanagan P, Oechel W et al (2006) Microbial activity in soils frozen to below−39°C. Soil Biol Biochem 38:785–794CrossRefGoogle Scholar
  84. Pautler BG, Simpson AJ, Mcnally DJ et al (2010) Arctic permafrost active layer detachments stimulate microbial activity and degradation of soil organic matter. Environ Sci Technol 44:4076–4082PubMedCrossRefGoogle Scholar
  85. Pietramellara G, Ascher J, Borgogni F et al (2009) Extracellular DNA in soil and sediment: fate and ecological relevance. Biol Fertil Soils 45:219–235CrossRefGoogle Scholar
  86. Poinar HN, Hoss M, Bada JL et al (1996) Amino acid racemization and the preservation of ancient DNA. Science 272:864PubMedCrossRefGoogle Scholar
  87. Ponder MA, Gilmour SJ, Bergholz PW et al (2005) Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria. FEMS Microbiol Ecol 53:103–115PubMedCrossRefGoogle Scholar
  88. Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. PNAS 101:4631–4636PubMedPubMedCentralCrossRefGoogle Scholar
  89. Ran Y, Li X, Cheng G et al (2012) Distribution of permafrost in China: an overview of existing permafrost maps. Permafr Periglac Process 23:322–333CrossRefGoogle Scholar
  90. Rivkina E, Friedmann E, Mckay C et al (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233PubMedPubMedCentralCrossRefGoogle Scholar
  91. Rivkina E, Shcherbakova V, Laurinavichius K et al (2007) Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiol Ecol 61:1–15PubMedCrossRefGoogle Scholar
  92. Routh J, Hugelius G, Kuhry P et al (2014) Multi-proxy study of soil organic matter dynamics in permafrost peat deposits reveal vulnerability to climate change in the European Russian Arctic. Chem Geol 368:104–117CrossRefGoogle Scholar
  93. Schostag M, Stibal M, Jacobsen CS et al (2015) Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA-and RNA-based analyses. Front Microbiol 6:399PubMedPubMedCentralCrossRefGoogle Scholar
  94. Schuur EA, Bockheim J, Canadell JG et al (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58:701–714CrossRefGoogle Scholar
  95. Schuur E, Mcguire A, Schädel C et al (2015) Climate change and the permafrost carbon feedback. Nature 520:171–179PubMedCrossRefGoogle Scholar
  96. Shcherbakova V, Rivkina E, Pecheritsyna S et al (2011) Methanobacterium arcticum sp. nov. a methanogenic archaeon from Holocene Arctic permafrost. Int J Syst Evol Microbiol 61:144–147PubMedCrossRefGoogle Scholar
  97. Shcherbakova V, Chuvilskaya N, Rivkina E et al (2005) Novel psychrophilic anaerobic spore-forming bacterium from the overcooled water brine in permafrost: description of Clostridium algoriphilum sp. nov. Extremophiles 9:239–246PubMedCrossRefGoogle Scholar
  98. Shcherbakova V, Yoshimura Y, Ryzhmanova Y et al (2016) Archaeal communities of Arctic methane-containing permafrost. FEMS Microbiol Ecol 92:fiw135PubMedCrossRefGoogle Scholar
  99. Shur Y, Jorgenson M (2007) Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafr Periglac Process 18:7–19CrossRefGoogle Scholar
  100. Shur Y, Hinkel KM, Nelson FE (2005) The transient layer: implications for geocryology and climate-change science. Permafr Periglac Process 16:5–17CrossRefGoogle Scholar
  101. Smith CI, Chamberlain AT, Riley MS et al (2001) Neanderthal DNA: not just old but old and cold? Nature 410:771–772PubMedCrossRefGoogle Scholar
  102. Song C, Wang X, Miao Y et al (2014) Effects of permafrost thaw on carbon emissions under aerobic and anaerobic environments in the Great Hing'an Mountains, China. Sci Total Environ 487:604–610PubMedCrossRefGoogle Scholar
  103. Stackhouse BT, Vishnivetskaya TA, Layton A et al (2015) Effects of simulated spring thaw of permafrost from mineral cryosol on CO2 emissions and atmospheric CH4 uptake. J Geophys Res Biogeosci 120:1764–1784CrossRefGoogle Scholar
  104. Steven B, Leveille R, Pollard WH et al (2006) Microbial ecology and biodiversity in permafrost. Extremophiles 10:259–267PubMedCrossRefGoogle Scholar
  105. Steven B, Briggs G, Mckay CP et al (2007) Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol 59:513–523PubMedCrossRefGoogle Scholar
  106. Steven B, Pollard WH, Greer CW et al (2008) Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. Environ Microbiol 10:3388–3403PubMedCrossRefGoogle Scholar
  107. Tamppari L, Anderson R, Archer P et al (2012) Effects of extreme cold and aridity on soils and habitability: McMurdo Dry Valleys as an analogue for the Mars Phoenix landing site. Antarct Sci 24:211–228CrossRefGoogle Scholar
  108. Tarnocai C (1980) Summer temperatures of cryosolic soils in the north-central Keewatin, NWT. Can J Soil Sci 60:311–327CrossRefGoogle Scholar
  109. Tarnocai C (2006) The effect of climate change on carbon in Canadian peatlands. Glob Planet Chang 53:222–232CrossRefGoogle Scholar
  110. Tarnocai C (2009) Arctic permafrost soils. In: Margesin R (ed) Permafrost soils. Springer, pp 3–16Google Scholar
  111. Tarnocai C, Canadell J, Schuur E et al (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23:GB2023CrossRefGoogle Scholar
  112. Taş N, Prestat E, Mcfarland JW et al (2014) Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J 8:1904–1919PubMedPubMedCentralCrossRefGoogle Scholar
  113. Tuorto SJ, Darias P, Mcguinness LR et al (2014) Bacterial genome replication at subzero temperatures in permafrost. ISME J 8:139–149PubMedCrossRefGoogle Scholar
  114. Van Everdingen R (ed) (1998) Multi-language glossary of permafrost and related ground-ice terms. (revised May 2005) National Snow and Ice Center, Boulder, ColaradoGoogle Scholar
  115. Vishnivetskaya TA, Petrova MA, Urbance J et al (2006) Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods. Astrobiology 6:400–414PubMedCrossRefGoogle Scholar
  116. Vonk J, Mann P, Dowdy K et al (2013) Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge thaw. Environ Res Lett 8:035023CrossRefGoogle Scholar
  117. Wei S, Cui H, He H et al (2014) Diversity and distribution of Archaea community along a stratigraphic permafrost profile from Qinghai-Tibetan Plateau, China. Archaea 2014:240817PubMedPubMedCentralCrossRefGoogle Scholar
  118. Wilhelm RC, Niederberger TD, Greer C et al (2011) Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. Can J Microbiol 57:303–315PubMedCrossRefGoogle Scholar
  119. Wilhelm RC, Radtke KJ, Mykytczuk NC et al (2012) Life at the wedge: the activity and diversity of Arctic ice wedge microbial communities. Astrobiology 12:347–360PubMedCrossRefGoogle Scholar
  120. Willerslev E, Hansen AJ, Poinar HN (2004a) Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol Evol 19:141–147PubMedCrossRefGoogle Scholar
  121. Willerslev E, Hansen AJ, Rønn R et al (2004b) Long-term persistence of bacterial DNA. Curr Biol 14:R9–R10PubMedCrossRefGoogle Scholar
  122. Wu X, Zhang W, Liu G et al (2012) Bacterial diversity in the foreland of the Tianshan No. 1 glacier, China. Environ Res Lett 7:014038CrossRefGoogle Scholar
  123. Yergeau E, Hogues H, Whyte LG et al (2010) The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J 4:1206–1214PubMedCrossRefGoogle Scholar
  124. Yun J, Ju Y, Deng Y et al (2014) Bacterial community structure in two permafrost wetlands on the Tibetan Plateau and Sanjiang Plain, China. Microb Ecol 68:360–369PubMedCrossRefGoogle Scholar
  125. Zhang G, Niu F, Ma X et al (2007) Phylogenetic diversity of bacteria isolates from the Qinghai-Tibet Plateau permafrost region. Can J Microbiol 53:1000–1010PubMedCrossRefGoogle Scholar
  126. Zhang L-M, Wang M, Prosser JI et al (2009) Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest. FEMS Microbiol Ecol 70:208–217CrossRefGoogle Scholar
  127. Zhao Q, Bai Y, Zhang G et al (2011) Chryseobacterium xinjiangense sp. nov. isolated from alpine permafrost. Int J Syst Evol Microbiol 61:1397–1401PubMedCrossRefGoogle Scholar
  128. Zimov SA, Schuur EA, Chapin Iii FS (2006) Permafrost and the global carbon budget. Science 312:1612–1613PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ianina Altshuler
    • 1
  • Jacqueline Goordial
    • 1
    • 2
  • Lyle G. Whyte
    • 1
    Email author
  1. 1.Department of Natural Resource SciencesMcGill UniversitySainte-Anne-de-BellevueCanada
  2. 2.Bigelow Laboratory for Ocean Sciences, Deep Biosphere LabEast BoothbayUSA

Personalised recommendations