Advertisement

Microbial Life in the Deep Sea: Psychropiezophiles

  • Yuichi NogiEmail author
Chapter

Abstract

Psychropiezophiles are microorganisms specialized for living in the deep-sea environment. Piezophiles display maximum growth at high pressure. Some can also grow at atmospheric pressure; those that cannot are referred to as obligatory piezophiles. A temperature change affects deep-sea psychropiezophiles more than a pressure change. Therefore, sample collection and cultivation temperature should be kept low. The preferred method for the long-term preservation and storage of psychropiezophiles is freezing in the vapor phase of liquid nitrogen. Initially, cultures of deep-sea psychropiezophilic bacteria were only species affiliated with one of five genera within the Gammaproteobacteria subgroup: Shewanella, Photobacterium, Colwellia, Moritella, and Psychromonas. However, more recently, species classified as Alphaproteobacteria and Firmicutes have also been found. The genome of several of these bacteria has been analyzed, which revealed characteristic features of these microorganisms. Psychropiezophiles contain unsaturated fatty acids in their cell membrane layers, but the presence of polyunsaturated fatty acids, like eicosapentaenoic acid and docosahexaenoic acid, is not obligatory for growth under high pressure. In the future, along with the development of culture methods and isolation techniques, a variety of other psychropiezophilic species will be discovered and the relationship between pressure and growth of psychropiezophiles will be clarified.

References

  1. Allen EE, Facciotti D, Bartlett DH (1999) Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl Environ Microbiol 65:1710–1720PubMedPubMedCentralGoogle Scholar
  2. Aono E, Baba T, Ara T, Nishi T, Nakamichi T, Inamoto E, Toyonaga H, Hasegawa M, Takai Y, Okumura Y, Baba M, Tomita M, Kato C, Oshima T, Nakasone K, Mori H (2010) Complete genome sequence and comparative analysis of Shewanella violacea, a psychrophilic and piezophilic bacterium from deep sea floor sediments. Mol Biosyst 6:1216–1226CrossRefPubMedGoogle Scholar
  3. Bartlett DH, Welch TJ (1995) OmpH gene expression is regulated by multiple environmental cues in addition to high pressure in the deep-sea bacterium Photobacterium species strain SS9. J Bacteriol 177:1008–1016CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beijerinck MW (1889) Le Photobacterium luminosum, bactérie luminosum de la Mer Nord. Arch Néerl Sci 23:401–427 (in French)Google Scholar
  5. Bowman JP, Gosink JJ, McCammon SA, Lewis TE, Nichols DS, Nichols PD, Skerratt JH, Staley JT, McMeekin TA (1998) Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:6w3). Int J Syst Bacteriol 48:1171–1180CrossRefGoogle Scholar
  6. Cao Y, Chastain RA, Eloe EA, Nogi Y, Kato C, Bartlett DH (2014) Novel psychropiezophilic Oceanospirillales species Profundimonas piezophila gen. nov., sp. nov., isolated from the deep-sea environment of the Puerto Rico Trench. Appl Environ Microbiol 80:54–60CrossRefPubMedPubMedCentralGoogle Scholar
  7. Collins MD, Farrow JAE, Phillips BA, Ferusu S, Jones D (1987) Classification of Lactobacillus divergens, Lactobacillus piscicola, and some catalase-negative, asporogenous, rod-shaped bacteria from poultry in a new genus, Carnobacterium. Int J Syst Bacteriol 37:310–316CrossRefGoogle Scholar
  8. Colwell RR, Morita RY (1964) Reisolation and emendation of description of Vibrio marinus (Russell) Ford. J Bacteriol 88:831–837PubMedPubMedCentralGoogle Scholar
  9. DeLong EF, Yayanos AA (1985) Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228:1101–1103CrossRefPubMedGoogle Scholar
  10. DeLong EF, Yayanos AA (1986) Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl Environ Microbiol 51:730–737PubMedPubMedCentralGoogle Scholar
  11. DeLong EF, Franks DG, Yayanos AA (1997) Evolutionary relationship of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63:2105–2108PubMedPubMedCentralGoogle Scholar
  12. Deming JW, Hada H, Colwell RR, Luehrsen KR, Fox GE (1984) The nucleotide sequence of 5S rRNA from two strains of deep-sea barophilic bacteria. J Gen Microbiol 130:1911–1920PubMedGoogle Scholar
  13. Deming JW, Somers LK, Straube WL, Swartz DG, Macdonell MT (1988) Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. System Appl Microbiol 10:152–160CrossRefGoogle Scholar
  14. De Poorter LMI, Suzaki Y, Sato T, Tamegai H, Kato C (2004) Effects of pressure on the structure and activity of isopropylmalate dehydrogenases from deep-sea Shewanella species. Mar Biotechnol 6:s190–s194Google Scholar
  15. Eloe EA, Malfatti F, Gutierrez J, Hardy K, Schmidt WE, Pogliano K, Pogliano J, Azam F, Bartlett DH (2011) Isolation and characterization of a psychropiezophilic Alphaproteobacterium. Appl Environ Microbiol 77:8145–8153CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fang JS, Barcelona MJ, Nogi Y, Kato C (2000) Biochemical implications and geochemical significance of novel phospholipids of the extremely barophilic bacteria from the Marianas Trench at 11,000 m. Deep-Sea Res Part I 47:1173–1182CrossRefGoogle Scholar
  17. Fang JS, Chan O, Kato C, Sato T, Peeples T, Niggemeyer K (2003) Phospholipid FA of piezophilic bacteria from the deep sea. Lipids 38:885–887CrossRefPubMedGoogle Scholar
  18. Ikemoto E, Kyo M (1993) Development of microbiological compact mud sampler. Jpn Mar Sci Technol Res 30:1–16Google Scholar
  19. Kato C (1999) Barophiles (piezophiles). In: Horikoshi K, Tsujii K (eds) Extremophiles in deep-sea environments. Springer, Tokyo, pp 91–111CrossRefGoogle Scholar
  20. Kato C, Sato T, Horikoshi K (1995) Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodiv Conserv 4:1–9CrossRefGoogle Scholar
  21. Kato C, Li L, Nakamura Y, Nogi Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64:1510–1513PubMedPubMedCentralGoogle Scholar
  22. Kato C, Nakasone K, Qureshi MH, Horikoshi K (2000) How do deep-sea microorganisms respond to changes in environmental pressure? In: Storey KB, Storey JM (eds) Cell and molecular response to stress, vol 1. Environmental stressors and gene responses. Elsevier Science BV, Amsterdam, pp 277–291Google Scholar
  23. Kawano H, Takahashi H, Abe F, Kato C, Horikoshi K (2009) Identification and characterization of two alternative sigma factors of RNA polymerase in the deep-sea piezophilic bacterium Shewanella violacea, strain DSS12. Biosci Biotechnol Biochem 73:200–202CrossRefPubMedGoogle Scholar
  24. Lauro FM, Chastain RA, Blankenship LE, Yayanos AA, Bartlett DH (2007) The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation. Appl Environ Microbiol 73:838–845CrossRefPubMedGoogle Scholar
  25. MacDonell MT, Colwell RR (1985) Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 6:171–182CrossRefGoogle Scholar
  26. Margesin R, Nogi Y (2004) Psychropiezophilic microorganisms. Cell Mol Biol 50:429–436PubMedGoogle Scholar
  27. Methé BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou L, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918CrossRefPubMedPubMedCentralGoogle Scholar
  28. Miyazaki M, Nogi Y, Fujiwara Y, Horikoshi K (2008) Psychromonas japonica sp. nov., Psychromonas aquimarina sp. nov., Psychromonas macrocephali sp. nov. and Psychromonas ossibalaenae sp. nov., psychrotrophic bacteria isolated from sediment adjacent to sperm whale carcasses off Kagoshima, Japan. Int J Syst Evol Microbiol 58:1709–1714CrossRefPubMedGoogle Scholar
  29. Mountfort DO, Rainey FA, Burghardt J, Kasper F, Stackebrant E (1998) Psychromonas antarcticus gen. nov., sp. nov., a new aerotolerant anaerobic, halophilic psychrophile isolated from pond sediment of the McMurdo ice shelf, Antarctica. Arch Microbiol 169:231–238CrossRefPubMedGoogle Scholar
  30. Nakasone K, Ikegami A, Kato C, Usami R, Horikoshi K (1998) Mechanisms of gene expression controlled by pressure in deep-sea microorganisms. Extremophiles 2:149–154CrossRefPubMedGoogle Scholar
  31. Nakasone K, Ikegami A, Kawano H, Usami R, Kato C, Horikoshi K (2002) Transcriptional regulation under pressure conditions by the RNA polymerase s54 factor with a two component regulatory system in Shewanella violacea. Extremophiles 6:89–95CrossRefPubMedGoogle Scholar
  32. Nogi Y, Kato C (1999) Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench, and Moritella yayanosii sp. nov., a new barophilic bacterial species. Extremophiles 3:71–77CrossRefPubMedGoogle Scholar
  33. Nogi Y, Kato C, Horikoshi K (1998a) Moritella japonica sp. nov., a novel barophilic bacterium isolated from a Japan Trench sediment. J Gen Appl Microbiol 44:289–295CrossRefPubMedGoogle Scholar
  34. Nogi Y, Kato C, Horikoshi K (1998b) Taxonomic studies of deep-sea barophilic Shewanella species, and Shewanella violacea sp. nov., a new barophilic bacterial species. Arch Microbiol 170:331–338CrossRefPubMedGoogle Scholar
  35. Nogi Y, Masui N, Kato C (1998c) Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2:1–7CrossRefPubMedGoogle Scholar
  36. Nogi Y, Kato C, Horikoshi K (2002) Psychromonas kaikoae sp. nov., a novel piezophilic bacterium from the deepest cold-seep sediments in the Japan Trench. Int J Syst Evol Microbiol 52:1527–1532PubMedGoogle Scholar
  37. Nogi Y, Hosoya S, Kato C, Horikoshi K (2004) Colwellia piezophila sp. nov., isolation of novel piezophilic bacteria from the deep-sea fissure sediments of the Japan Trench. Int J Syst Evol Microbiol 54:1627–1631CrossRefPubMedGoogle Scholar
  38. Nogi Y, Hosoya S, Kato C, Horikoshi K (2007) Psychromonas hadalis sp. nov., a novel piezophilic bacterium isolated from the bottom of the Japan Trench. Int J Syst Evol Microbiol 57:1360–1364CrossRefPubMedGoogle Scholar
  39. Ohmae E, Gekko K, Kato C (2015) Environmental adaptation of dihydrofolate reductase from deep-sea bacteria. In: Akasaka K, Matsuki H (eds) High pressure bioscience—basic concepts, applications and frontiers. Springer, Berlin, pp 423–442Google Scholar
  40. Owen R, Legros RM, Lapage SP (1978) Base composition, size and sequence similarities of genome deoxyribonucleic acids from clinical isolates of Pseudomonas putrefaciens. J Gen Microbiol 104:127–138CrossRefPubMedGoogle Scholar
  41. Seo HJ, Bae SS, Lee J-H, Kim S-J (2005) Photobacterium frigidiphilum sp. nov., a psychrophilic, lipolytic bacterium isolated from deep-sea sediments of Edison Seamount. Int J Syst Evol Microbiol 55:1661–1666CrossRefPubMedGoogle Scholar
  42. Stelling SC, Techtmann SM, Utturkar SM, Alshibli NK, Brown SD, Hazen TC (2014) Draft genome sequence of Thalassotalea sp. strain ND16A isolated from eastern Mediterranean Sea water collected from a depth of 1,055 meters. Genome Announcement 2:e01231-14CrossRefGoogle Scholar
  43. Tamegai H, Kawano H, Ishii A, Chikuma S, Nakasone K, Kato C (2005) Pressure-regulated biosynthesis of cytochrome bd in piezo- and psychrophilic deepsea bacterium Shewanella violacea DSS12. Extremophiles 9:247–253CrossRefPubMedGoogle Scholar
  44. Urakawa H, Kita-Tsukamoto K, Steven SE, Ohwada K, Colwell RR (1998) A proposal to transfer Vibrio marinus (Russell 1891) to a new genus Moritella gen. nov. as Moritella marina comb. nov. FEMS Microbiol Lett 165:373–378CrossRefPubMedGoogle Scholar
  45. Vezzi A, Campanaro S, D’Angelo M, Simonato F, Vitulo N, Laauro FM, Cestaro A, Malacrida G, Simionati B, Cannata N, Romualdi C, Bartlett DH, Valle G (2005) Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:1459–1461CrossRefPubMedGoogle Scholar
  46. Xiao X, Wang P, Zeng X, Bartlett DH, Wang F (2007) Shewanella psychrophila sp. nov. and Shewanella piezotolerans sp. nov., isolated from west Pacific deep-sea sediment. Int J Syst Evol Microbiol 57:60–65CrossRefPubMedGoogle Scholar
  47. Xu Y, Nogi Y, Kato C, Liang Z, Rüger H-J, Kegel DD, Glansdorff N (2003a) Psychromonas profunda sp. nov., a psychropiezophilic bacterium from deep Atlantic sediments. Int J Syst Evol Microbiol 53:527–532CrossRefPubMedGoogle Scholar
  48. Xu Y, Nogi Y, Kato C, Liang Z, Rüger H-J, Kegel DD, Glansdorff N (2003b) Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Syst Evol Microbiol 53:533–538CrossRefPubMedGoogle Scholar
  49. Yayanos AA (1986) Evolutional and ecological implications of the propertiesof deep-sea barophilic bacteria. Proc Natl Acad Sci U S A 83:9542–9546CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yayanos AA (1995) Microbiology to 10,500 meters in the deep sea. Annu Rev Microbiol 49:777–805CrossRefPubMedGoogle Scholar
  51. Yayanos AA, DeLong EF (1987) Deep-sea bacterial fitness to environmental temperatures and pressure. In: Jannasch HW, Marquis RE, Zimmerman AM (eds) Current perspectives in high pressure biology. Academic, Toronto, pp 17–32Google Scholar
  52. Yayanos AA, Dietz AS, Van Boxtel R (1979) Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205:808–810CrossRefPubMedGoogle Scholar
  53. Yayanos AA, Dietz AS, Van Boxtel R (1981) Obligately barophilic bacterium from the Mariana Trench. Proc Natl Acad Sci U S A 78:5212–5215CrossRefPubMedPubMedCentralGoogle Scholar
  54. ZoBell CE, Johnson FH (1949) The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J Bacteriol 57:179–189PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Research and Development Center for Marine BiosciencesJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan

Personalised recommendations