Rhizoremediation in Cold Climates

  • Kim YrjäläEmail author
  • Timo P. Sipilä
  • Shinjini Mukherjee


Rhizoremediation has become increasingly interesting as it offers several solutions to environmental problems by making use of plants. The International Phytotechnology Society ( defines phytotechnology as the strategic use of plants to solve environmental problems by remediating the qualities and quantities of our soil, water, and air resources and by restoring ecosystem services in managed landscapes. Plants always interact with belowground microbes, bacteria, fungi, and archaea, and even aboveground epi/endophytic microbes. The recent adoption of omics techniques has led to much widened understanding of soil microbial communities, and conditions that promote predictable activity in contaminated soils with effects on plants. These methods have in microbial ecology brought out new concepts like plant microbiome describing the wide array of microorganisms living and interacting in different ways with the plant. The identification of increasing numbers of microbes associated with plants helps to notify new functional groups of microbes that are and become important for applications of phytotechnology. In the boreal cold climate freezing and thawing of soil occurs, which shapes the active microbial communities in a peculiar way. Also in the cold season soil, microbes perform tasks important for ecosystem functioning. The plants create a suitable environment for microbes especially in the rhizosphere where root exudates are excellent food for microbes in the vicinity of roots. Woody plants have received increased attention, especially poplars (Populus spp.), when it was recognized that they can reduce the level of trichloroethylenes in soil with the help of endophytes. Poplars have successfully been used for rhizoremediation of petroleum and other hydrocarbon compounds.



I want to thank BSc Paola Diaz Londono for planning and designing the figure illustrating rhizoremediation.


  1. Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10:171–179PubMedCrossRefGoogle Scholar
  2. Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Environ Sci Technol 27:2630–2636CrossRefGoogle Scholar
  3. Andreolli M, Lampis S, Poli M, Gullner G, Biró B, Vallini G (2013) Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons. Chemosphere 92:688–694PubMedCrossRefGoogle Scholar
  4. Araujo WL, Marcon J, Maccheroni W Jr, Van Elsas JD, Van Vuurde JWL, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914PubMedPubMedCentralCrossRefGoogle Scholar
  5. Banning NC, Gleeson DB, Grigg AH, Grant CD, Andersen GL, Brodie EL, Murphy DV (2011) Soil microbial community successional patterns during forest ecosystem restoration. Appl Environ Microbiol 77:6158–6164PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, Van Der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588PubMedCrossRefGoogle Scholar
  7. Barberán A, Hammer TJ, Madden AA, Fierer N (2016) Microbes should be central to ecological education and outreach. J Microbiol Biol Educ 17:23–28PubMedPubMedCentralCrossRefGoogle Scholar
  8. Batool R, Yrjälä K, Hasnain S (2015) Study on cellular changes and potential endotrophy of wheat roots due to colonization of chromium reducing bacteria. Int J Sci Technol 12:3263–3272CrossRefGoogle Scholar
  9. Bengtsson G, Törneman N, Yang X (2010) Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil. Environ Poll 158:2865–2871CrossRefGoogle Scholar
  10. Bordenave S, Goni-urriza M, Vilette C, Blanchard S, Caumette P, Duran R (2008) Diversity of ringhydroxylating dioxygenases in pristine and oil contaminated microbial mats at genomic and transcriptomic levels. Environ Microbiol 10:3201–3211PubMedCrossRefGoogle Scholar
  11. Bradshaw H, Ceulemans R, Davis J, Stettler R (2000) Emerging model systems in plant biology: poplar (Populus) as a model forest tree. J Plant Growth Regul 19:306–313CrossRefGoogle Scholar
  12. Bulgarelli D, Rott M, Schlaeppi K, Themaat v, Loren EV, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95PubMedCrossRefGoogle Scholar
  13. Burken JG, Schnoor JL (1996) Phytoremediation: plant uptake of atrazine and role of root exudates. J Environ Eng 122:958–963CrossRefGoogle Scholar
  14. Burken JG, Ross C, Harrison LM, Marsh A, Zetterstrom L, Gibbons JS (2001) Benzene toxicity and removal in laboratory phytoremediation studies. Pract Periodical Hazard, Toxic, Radioact Waste Manag 5:161–171CrossRefGoogle Scholar
  15. Christofi N, Ivshina I (2002) Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol 93:915–929PubMedCrossRefGoogle Scholar
  16. Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144CrossRefGoogle Scholar
  17. Corseuil HX, Moreno FN (2001) Phytoremediation potential of willow trees for aquifers contaminated with ethanol-blended gasoline. Water Res 35:3013–3017PubMedCrossRefGoogle Scholar
  18. Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397CrossRefGoogle Scholar
  19. de Carcer DA, Martin M, Karlson U, Rivilla R (2007) Changes in bacterial populations and in biphenyl dioxygenase gene diversity in a polychlorinated biphenyl-polluted soil after introduction of willow trees for rhizoremediation. Appl Environ Microbiol 73:6224–6232PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dobson R, Schroth MH, Schuermann A, Zeyer J (2004) Methods to assess the amenability of petroleum hydrocarbons to bioremediation. Environ Toxicol Chem 23:929–937PubMedCrossRefGoogle Scholar
  21. Dong Z, Canny MJ, McCully ME, Roboredo MR, Cabadilla CF, Ortega E, Rodes R (1994) A nitrogen-fixing endophyte of sugarcane stems (a new role for the apoplast). Plant Physiol 105:1139–1147PubMedPubMedCentralCrossRefGoogle Scholar
  22. Doni S, Macci C, Peruzzi E, Arenella M, Ceccanti B, Masciandaro G (2012) In situ phytoremediation of a soil historically contaminated by metals, hydrocarbons and polychlorobiphenyls. J Environ Monitoring 14:1383–1390CrossRefGoogle Scholar
  23. Enwall K, Throback IN, Stenberg M, Soderstrom M, Hallin S (2010) Soil resources influence spatial patterns of denitrifying communities at scales compatible with land management. Appl Environ Microbiol 76:2243–2250PubMedPubMedCentralCrossRefGoogle Scholar
  24. Fierer N, Nemergut D, Knight R, Craine JM (2010) Changes through time: integrating microorganisms into the study of succession. Res Microbiol 161:635–642PubMedCrossRefGoogle Scholar
  25. Filler DM, Lindstrom JE, Braddock JF, Johnson RA, Nickalaski R (2001) Integral biopile components for successful bioremediation in the Arctic. Cold Reg Sci Technol 32:143–156CrossRefGoogle Scholar
  26. Finnish Environment (2015) Valtakunnallinen pilaantuneiden maa-alueiden riskienhallintastrategia. Suomen ympäristö 10/2015. Helsinki, FinlandGoogle Scholar
  27. Fletcher L, Harvey I (1981) An association of a Lolium endophyte with ryegrass staggers. N Z Vet J 29:185–186PubMedCrossRefGoogle Scholar
  28. Furukawa K, Tomizuka N, Kamibayashi A (1983) Metabolic breakdown of Kaneclors (polychlorobiphenyls) and their products by Acinetobacter sp. Appl Environ Microbiol 46:140–145PubMedPubMedCentralGoogle Scholar
  29. Galand PE, Saarnio S, Fritze H, Yrjälä K (2002) Depth related diversity of methanogen Archaea in Finnish oligotrophic fen. FEMS Microbiol Ecol 42:441–449PubMedCrossRefGoogle Scholar
  30. Gaskin SE, Bentham RH (2010) Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses. Sci Total Environ 408:3683–3688PubMedCrossRefGoogle Scholar
  31. Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30CrossRefGoogle Scholar
  32. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374PubMedCrossRefGoogle Scholar
  33. Golan-Goldhirsh A, Barazani O, Nepovim A, Soudek P, Smrcek S, Dufkova L, Krenkova S, Yrjala K, Schröder P, Vanek T (2004) Plant response to heavy metals and organic pollutants in cell culture and at whole plant level. J Soils Sediments 4:133–140CrossRefGoogle Scholar
  34. Gomes NCM, Borges LR, Paranhos R, Pinto FN, Krögerrecklenfort E, Mendonça-Hagler LCS, Smalla K (2007) Diversity of ndo genes in mangrove sediments exposed to different sources of polycyclic aromatic hydrocarbon pollution. Appl Environ Microbiol 73:7392–7399PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gordon M, Choe N, Duffy J, Ekuan G, Heilman P, Muiznieks I, Ruszaj M, Shurtleff BB, Strand S, Wilmoth J, Newman LA (1998) Phytoremediation of trichloroethylene with hybrid poplars. Environ Health Perspect 106(Suppl 4):1001–1004PubMedPubMedCentralCrossRefGoogle Scholar
  36. Griffiths BS, Philippot L (2013) Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol Rev 37:112–129PubMedCrossRefGoogle Scholar
  37. Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, Doring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320PubMedPubMedCentralCrossRefGoogle Scholar
  38. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192PubMedCrossRefGoogle Scholar
  39. Hendrickx B, Dejonghe W, Faber F, Boenne W, Bastiaens L, Verstraete W, Top EM, Springael D (2006) PCR-DGGE method to assess the diversity of BTEX mono-oxygenase genes at contaminated sites. FEMS Microbiol Ecol 55:262–273PubMedCrossRefGoogle Scholar
  40. Hirsh S, Compton H, Matey D, Wrobel J, Schneider W (2003) Five year pilot study: Aberdeen proving ground Maryland. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken, NJ, pp 635–659CrossRefGoogle Scholar
  41. Hoag DL, Hornsby AG (1992) Coupling groundwater contamination with economic returns when applying farm pesticides. J Environ Qual 21:579–586CrossRefGoogle Scholar
  42. Hong Z, Zhang Z, Olson JM, Verma DP (2001) A novel UDP-glucose transferase is part of the callose synthase complex and interacts with phragmoplastin at the forming cell plate. Plant Cell 13:769–779PubMedPubMedCentralCrossRefGoogle Scholar
  43. Jordahl JL, Foster L, Schnoor JL, Alvarez PJ (1997) Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation. Environ Toxicol Chem 16:1318–1321CrossRefGoogle Scholar
  44. Juottonen H, Galand PE, Tuittila E, Laine J, Fritze H, Yrjälä K (2005) Methanogen communities and bacteria along an ecohydrological gradient in a northern raised bog complex. Environ Microbiol 7:1547–1557PubMedCrossRefGoogle Scholar
  45. Khan AL, Hamayun M, Kang S, Kim Y, Jung H, Lee J, Lee I (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:1–14CrossRefGoogle Scholar
  46. Khoei NS, Lampis S, Zonaroa E, Yrjälä K, Bernardic P, Vallini G (2017) Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum. New Biotechnol 34:1–11CrossRefGoogle Scholar
  47. Kidd P, Prieto-Fernández A, Monterroso C, Acea M (2008) Rhizosphere microbial community and hexachlorocyclohexane degradative potential in contrasting plant species. Plant Soil 302:233–247CrossRefGoogle Scholar
  48. Kilpi S, Himberg K, Yrjälä K, Backström V (1988) The degradation of biphenyl and chlorobiphenyls by mixed bacterial cultures. FEMS Microbiol Ecol 53:19–26CrossRefGoogle Scholar
  49. Klopfenstein NB, YoungWoo C, MeeSook K, Ahuja MR, Dillon MC, Carman RC, Eskew LG (eds) (1997) Micropropagation, genetic engineering, and molecular biology of Populus. General Technical Report RM-GTR-297. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, ColoradoGoogle Scholar
  50. Kowalchuk GA, Stienstra AW, Stephen JR, Woldendorp JW (2000) Changes in the community structure of ammonia-oxidizing bacteria during secondary succession of calcareous grasslands. Environ Microbiol 2:99–110PubMedCrossRefGoogle Scholar
  51. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17:6–15PubMedCrossRefGoogle Scholar
  52. Kuntze K, Shinoda Y, Moutakki H, McInerney MJ, Vogt C, Richnow HH, Boll M (2008) 6-Oxocyclohex-1-ene-1-carbonyl-coenzyme A hydrolases from obligately anaerobic bacteria: characterization and identification of its gene as a functional marker for aromatic compounds degrading anaerobes. Environ Microbiol 10:1547–1556PubMedCrossRefGoogle Scholar
  53. Lee KY, Strand SE, Doty SL (2012) Phytoremediation of chlorpyrifos by populus and salix. Int J Phytoremediat 14:48–61CrossRefGoogle Scholar
  54. Lenoir I, Lounes-Hadj Sahraoui A, Fontaine J (2016) Arbuscular mycorrhizal fungal-assisted phytoremediation of soil contaminated with persistent organic pollutants: a review. Eur J Soil Sci 67:624–640CrossRefGoogle Scholar
  55. Liste H, Prutz I (2006) Plant performance, dioxygenase-expressing rhizosphere bacteria, and biodegradation of weathered hydrocarbons in contaminated soil. Chemosphere 62:1411–1420PubMedCrossRefGoogle Scholar
  56. Liu J, Schnoor JL (2008) Uptake and translocation of lesser-chlorinated polychlorinated biphenyls (PCBs) in whole hybrid poplar plants after hydroponic exposure. Chemosphere 73:1608–1616PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lynch JM, de Leij F (1990) Rhizosphere. Wiley Online Library, Chichester.
  59. Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34PubMedCrossRefGoogle Scholar
  60. Mackova M, Dowling D, Macek T (eds) (2006) Phytoremediation and rhizoremediation. Springer, DordrechtGoogle Scholar
  61. Mackova M, Prouzova P, Stursa P, Ryslava E, Uhlik O, Beranova K, Rezek J, Kurzawova V, Demnerova K, Macek T (2009) Phyto/rhizoremediation studies using long-term PCB-contaminated soil. Environ Sci Poll Res 16:817–829CrossRefGoogle Scholar
  62. Malavenda R, Rizzo C, Michaud L, Gerçe B, Bruni V, Syldatk C, Hausmann R, Giudice AL (2015) Biosurfactant production by Arctic and Antarctic bacteria growing on hydrocarbons. Polar Biol 38:1565–1574CrossRefGoogle Scholar
  63. Martin BC, George SJ, Price CA, Ryan MH, Tibbett M (2014) The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions. Sci Total Environ 472:642–653PubMedCrossRefGoogle Scholar
  64. Monclus R, Villar M, Barbaroux C, Bastien C, Fichot R, Delmotte FM, Delay D, Petit JM, Brechet C, Dreyer E, Brignolas F (2009) Productivity, water-use efficiency and tolerance to moderate water deficit correlate in 33 poplar genotypes from a Populus deltoides x Populus trichocarpa F1 progeny. Tree Physiol 29:1329–1339PubMedCrossRefGoogle Scholar
  65. Moore FP, Barac T, Borremans B, Oeyen L, Vangronsveld J, Van der Lelie D, Campbell CD, Moore ER (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556PubMedCrossRefGoogle Scholar
  66. Mukherjee S (2014) Successional and spatial patterns of bacterial communities in hydrocarbon-contaminated soils and Populus rhizosphere. Dissertationes Biocentri Viikki Universitatis Helsingiensis 27/2014, Helsinki, FinlandGoogle Scholar
  67. Mukherjee S, Heinonen M, Dequvire M, Sipilä T, Pulkkinen P, Yrjälä K (2013) Secondary succession of bacterial communities and co-occurrence of phylotypes in oil-polluted Populus rhizosphere. Soil Biol Biochem 58:188–197CrossRefGoogle Scholar
  68. Mukherjee S, Juottonen H, Siivonen P, Quesada CL, Tuomi P, Pulkkinen P, Yrjälä K (2014) Spatial patterns of microbial diversity and activity in an aged creosote-contaminated site. ISME J 8:2131–2142PubMedPubMedCentralCrossRefGoogle Scholar
  69. Mukherjee S, Sipilä T, Pulkkinen P, Yrjälä K (2015) Secondary successional trajectories of structural and catabolic bacterial communities in oil-polluted soil planted with hybrid poplar. Mol Ecol 24:628–642PubMedCrossRefGoogle Scholar
  70. Mulligan CN (2009) Recent advances in the environmental applications of biosurfactants. Curr Opin Colloid Interphace Sci 14:372–378CrossRefGoogle Scholar
  71. Ni Chadhain SM, Norman RS, Pesce KV, Kukor JJ, Zylstra GJ (2006) Microbial dioxygenase gene population shifts during polycyclic aromatic hydrocarbon biodegradation. Appl Environ Microbiol 72:4078–4087PubMedPubMedCentralCrossRefGoogle Scholar
  72. Nie M, Yang Q, Jiang LF, Fang CM, Chen JK, Li B (2010) Do plants modulate biomass allocation in response to petroleum pollution. Biol Lett 6:811–814PubMedPubMedCentralCrossRefGoogle Scholar
  73. Olson PE, Castro A, Joern M, DuTeau NM, Pilon-Smits EA, Reardon KF (2007) Comparison of plant families in a greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbon–contaminated soil. J Environ Qual 36:1461–1469PubMedCrossRefGoogle Scholar
  74. Palmroth MR, Pichtel J, Puhakka JA (2002) Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresour Technol 84:221–228PubMedCrossRefGoogle Scholar
  75. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39PubMedCrossRefGoogle Scholar
  76. Podell S, Emerson JB, Jones CM, Ugalde JA, Welch S, Heidelberg KB, Banfield JF, Allen EE (2014) Seasonal fluctuations in ionic concentrations drive microbial succession in a hypersaline lake community. ISME J 8:979–990PubMedCrossRefGoogle Scholar
  77. Pulkkinen P (2014) Finnish Broadcasting Company (Yle), Science (Tiede), 30 January 2014.
  78. Ramos J, Duque E, Van Dillewjin P, Daniels C, Krell T, Espinosa-Urgel M, Ramos-González M, Rodríguez S, Matilla M, Wittich R (2010) Removal of hydrocarbons and other related chemicals via the rhizosphere of plants. In: Timmis KN, McGenity TJ, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2575–2581CrossRefGoogle Scholar
  79. Ravel C, Courty C (1997) Beneficial effects of Neotyphodium lolii on the growth and the water status in perennial ryegrass cultivated under nitrogen deficiency or drought stress. Agronomie 17:173–181CrossRefGoogle Scholar
  80. Read D, Bengough A, Gregory P, Crawford JW, Robinson D, Scrimgeour C, Young IM, Zhang K, Zhang X (2003) Plant roots release phospholipid surfactants that modify the physical and chemical properties of soil. New Phytol 157:315–326CrossRefGoogle Scholar
  81. Rogers A, McDonald K, Muehlbauer MF, Hoffman A, Koenig K, Newman L, Taghavi S, Lelie D (2012) Inoculation of hybrid poplar with the endophytic bacterium Enterobacter sp. 638 increases biomass but does not impact leaf level physiology. GCB Bioenergy 4:364–370CrossRefGoogle Scholar
  82. Schiewer S, Niemeyer T (2006) Soil heating and optimized nutrient addition for accelerating bioremediation in cold climates. Polar Rec 42:23–31CrossRefGoogle Scholar
  83. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541PubMedPubMedCentralCrossRefGoogle Scholar
  84. Schnabel WE, White DM (2001) The effect of mycorrhizal fungi on the fate of aldrin: phytoremediation potential. Int J Phytoremediat 3:221–241CrossRefGoogle Scholar
  85. Schöftner P, Watzinger A, Holzknecht P, Wimmer B, Reichenauer TG (2016) Transpiration and metabolisation of TCE by willow plants – a pot experiment. Int J Phytoremediat 18:686–692CrossRefGoogle Scholar
  86. Shi Y, Lou K, Li C (2009) Promotion of plant growth by phytohormone-producing endophytic microbes of sugar beet. Biol Fertil Soils 45:645–653CrossRefGoogle Scholar
  87. Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Ouellette D, Roy R, Whyte LG, Banks MK (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475PubMedPubMedCentralCrossRefGoogle Scholar
  88. Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130PubMedCrossRefGoogle Scholar
  89. Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere–microbial interactions: opportunities and limitations. Trends Microbiol 12:386–393PubMedCrossRefGoogle Scholar
  90. Singh N, Sethunathan N, Megharaj M, Naidu R (2008) Bioavailability of sorbed pesticides to bacteria: an overview. Dev Soil Sci 32:73–82Google Scholar
  91. Sipilä T (2009) Plasmids and aromatic degradation in Sphingomonas for bioremediation: aromatic ring cleavage genes in soil and rhizosphere. Dissertationes bioscientiarum molecularium Universitatis Helsingiensis in Viikki 31/2009, Helsinki, FinlandGoogle Scholar
  92. Sipilä TP, Riisiö H, Yrjälä K (2006) Novel upper meta-pathway extradiol dioxygenase gene diversity in polluted soil. FEMS Microbiol Ecol 58:134–144PubMedCrossRefGoogle Scholar
  93. Sipilä TP, Keskinen A, Åkerman M, Fortelius C, Haahtela K, Yrjälä K (2008) High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of IE 3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. ISME J 2:968–981PubMedCrossRefGoogle Scholar
  94. Sipilä TP, Väisänen P, Paulin L, Yrjälä K (2010) Sphingobium sp. HV3 degrades both herbicides and polyaromatic hydrocarbons using ortho-and meta-pathways with differential expression shown by RT-PCR. Biodegradation 21:771–784PubMedCrossRefGoogle Scholar
  95. Slater H, Gouin T, Leigh MB (2011) Assessing the potential for rhizoremediation of PCB contaminated soils in northern regions using native tree species. Chemosphere 84:199–206PubMedPubMedCentralCrossRefGoogle Scholar
  96. Song B, Ward BB (2005) Genetic diversity of benzoyl coenzyme A reductase genes detected in denitrifying isolates and estuarine sediment communities. Appl Environ Microbiol 71:2036–2045PubMedPubMedCentralCrossRefGoogle Scholar
  97. Sterky F, Bhalerao RR, Unneberg P, Segerman B, Nilsson P, Brunner AM, Charbonnel-Campaa L, Lindvall JJ, Tandre K, Strauss SH, Sundberg B, Gustafsson P, Uhlen M, Bhalerao RP, Nilsson O, Sandberg G, Karlsson J, Lundeberg J, Jansson S (2004) A Populus EST resource for plant functional genomics. Proc Natl Acad Sci U S A 101:13951–13956PubMedPubMedCentralCrossRefGoogle Scholar
  98. Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136PubMedCrossRefGoogle Scholar
  99. Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757PubMedCrossRefGoogle Scholar
  100. Tanaka S, Brentner LB, Merchie KM, Schnoor JL, Yoon JM, Aken BV (2007) Analysis of gene expression in poplar trees (Populus deltoides × nigra, DN34) exposed to the toxic explosive hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX). Int J Phytoremediat 9:15–30CrossRefGoogle Scholar
  101. Taylor PM, Medd JM, Schoenborn L, Hodgson B, Janssen PH (2002) Detection of known and novel genes encoding aromatic ring-hydroxylating dioxygenases in soils and in aromatic hydrocarbon-degrading bacteria. FEMS Microbiol Lett 216:61–66PubMedCrossRefGoogle Scholar
  102. Tervahauta AI, Fortelius C, Tuomainen M, Åkerman ML, Rantalainen K, Sipilä T, Lehesranta SJ, Koistinen KM, Kärenlampi S, Yrjälä K (2009) Effect of birch (Betula spp.) and associated rhizoidal bacteria on the degradation of soil polyaromatic hydrocarbons, PAH-induced changes in birch proteome and bacterial community. Environ Poll 157:341–346CrossRefGoogle Scholar
  103. Tesar M, Reichenauer TG, Sessitsch A (2002) Bacterial rhizosphere populations of black poplar and herbal plants to be used for phytoremediation of diesel fuel. Soil Biol Biochem 34:1883–1892CrossRefGoogle Scholar
  104. Thomas F, Cébron A (2016) Short-term rhizosphere effect on available carbon sources, phenanthrene degradation, and active microbiome in an aged-contaminated industrial soil. Front Microbiol 7:1–15Google Scholar
  105. Thompson PL, Ramer LA, Guffey AP, Schnoor JL (1998) Decreased transpiration in poplar trees exposed to 2,4-6-trinitrotoluene. Environ Sci Technol 17:902–906Google Scholar
  106. Tibbett M, Ryan M, Kertesz MA (2012) Rhizosphere 3: where plants meet soils down-under. Plant Soil 358:1–5CrossRefGoogle Scholar
  107. Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245PubMedCrossRefGoogle Scholar
  108. Van Aken B, Yoon JM, Just CL, Schnoor JL (2004) Metabolism and mineralization of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine inside poplar tissues (Populus deltoides × nigra DN-34). Environ Sci Technol 38:4572–4579PubMedCrossRefGoogle Scholar
  109. Van Dillewijn P, Couselo JL, Corredoira E, Delgado A, Wittich R, Ballester A, Ramos JL (2008) Bioremediation of 2, 4, 6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen. Environ Sci Technol 42:7405–7410PubMedCrossRefGoogle Scholar
  110. Vervaeke P, Luyssaert S, Mertens J, Meers E, Tack F, Lust N (2003) Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environ Poll 126:275–282CrossRefGoogle Scholar
  111. Walker LR, Del Moral R (2003) Primary succession and ecosystem rehabilitation. University Press, CambridgeCrossRefGoogle Scholar
  112. Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Guillaumaud N, Le Roux X (2007) Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance. Environ Microbiol 9:2211–2219PubMedCrossRefGoogle Scholar
  113. Weyens N, Van Der Lelie D, Artois T, Smeets K, Taghavi S, Newman L, Carleer R, Vangronsveld J (2009) Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation. Environ Sci Technol 43:9413–9418PubMedCrossRefGoogle Scholar
  114. Weyens N, Beckers B, Schellingen K, Ceulemans R, Van der Lelie D, Newman L, Taghavi S, Carleer R, Vangronsveld J (2015) The potential of the Ni-resistant TCE-degrading Pseudomonas putida W619-TCE to reduce phytotoxicity and improve phytoremediation efficiency of poplar cuttings on a Ni-TCE co-contamination. Int J Phytoremediat 17:40–48CrossRefGoogle Scholar
  115. Wullschleger SD, Jansson S, Taylor G (2002) Genomics and forest biology: Populus emerges as the perennial favorite. Plant Cell 14:2651–2655PubMedPubMedCentralCrossRefGoogle Scholar
  116. Yrjälä K (1997) Polyphasic taxonomy, ecology, and genetics of plasmid-encoded sromatic cmp-pathway of dtrain HV3: a Sphingomonas sp. Dissertationes Biocentri Viikki Universitatis Helsingiensis 14/1997, Helsinki, FinlandGoogle Scholar
  117. Yrjälä K, Katainen R, Jurgens G, Saarela U, Saano A, Romantschuk M, Fritze H (2004) Wood ash fertilization alters the forest humus Archaea community. Soil Biol Biochem 36:199–201CrossRefGoogle Scholar
  118. Yrjälä K, Keskinen A, Åkerman M, Fortelius C, Sipilä TP (2010a) The rhizosphere and PAH amendment mediate impacts on functional and structural bacterial diversity in sandy peat soil. Environ Poll 158:1680–1688CrossRefGoogle Scholar
  119. Yrjälä K, Mancano G, Fortelius C, Åkerman M-L, Sipilä TP (2010b) The incidence of Burkholderia in epiphytic and endophytic bacterial cenoses in hybrid aspen grown on sandy peat. Boreal Environ Res 15:81–96Google Scholar
  120. Yrjälä K, Tuomivirta T, Juottonen H, Putkinen A, Lappi K, Tuittila E, Penttilä T, Minkkinen K, Laine J, Peltoniemi K (2011) CH4 production and oxidation processes in a boreal fen ecosystem after long-term water table drawdown. Global Change Biol 17:1311–1320CrossRefGoogle Scholar
  121. Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kim Yrjälä
    • 1
    Email author
  • Timo P. Sipilä
    • 1
    • 2
  • Shinjini Mukherjee
    • 1
  1. 1.MEM-Group, Department of BiosciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Division of Plant Biology, Department of Biosciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland

Personalised recommendations