Advertisement

Biodegradation of Petroleum Oil in Cold Marine Environments

  • Odd Gunnar BrakstadEmail author
  • Synnøve Lofthus
  • Deni Ribicic
  • Roman Netzer
Chapter

Abstract

The cold regions of the Earth are exposed to petroleum oil exploration, production, and transport, with risk of oil spills. Biodegradation is an essential petroleum weathering process and may remove discharged petroleum compounds completely by mineralization processes. These processes are most apparent for soluble compounds and with dispersed oil. Surface and subsurface spills will generate different situations, and in addition freezing of oil in marine ice may transport the oil over large distances. A variety of marine psychrophilic or psychrotolerant bacteria from both shallow and deepwater environments have been reported to degrade hydrocarbons in seawater or marine sediments, most of these affiliated within the phyla Proteobacteria and Bacteroidetes. Several of these may also act on hydrocarbons in sea ice, and active bacterial respiration in sea ice has been shown down to temperatures of −20 °C. The cold environments require several microbial survival and catabolism strategies, including productions of exopolysaccharides, cold-active enzymes, cold-shock, cold-acclimation and anti-freeze proteins, as well as adjusting their membrane lipid composition. Oil biodegradation in cold environments is well documented by laboratory and field studies, and even oil frozen in marine ice will stimulate bacterial metabolism. Flocculation processes have also been associated with oil biodegradation, raising discussions on the fate of the oil, especially after the Deepwater Horizon blowout. Bioremediation in cold marine environments has been investigated as a labor-effective technology which generates no harmful by-products, mainly by adding fertilizers to stimulate the oil biodegradation by the indigenous bacteria (biostimulation), but also inoculation of exogenic hydrocarbonoclastic cultures (bioaugmentation) has been suggested.

References

  1. Aldrett S, Bonner JS, Mills MA, Autenrieth RL, Stephens FL (1997) Microbial degradation of crude oil in marine environments tested in a flask experiment. Water Res 31(11):2840–2848CrossRefGoogle Scholar
  2. Alldredge AL, Silver MW (1988) Characteristics, dynamics and significance of marine snow. Prog Oceanogr 20(1):41–82CrossRefGoogle Scholar
  3. Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z Phys Chem 4:226–248Google Scholar
  4. Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45(1):180PubMedPubMedCentralGoogle Scholar
  5. Atlas RM (1995) Petroleum biodegradation and oil spill bioremediation. Mar Pollut Bull 31(4):178–182CrossRefGoogle Scholar
  6. Atlas RM, Bartha R (1972) Degradation and mineralization of petroleum in sea water: limitation by nitrogen and phosphorous. Biotechnol Bioeng 14(3):309–318PubMedCrossRefGoogle Scholar
  7. Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in US history. Environ Sci Technol 45(16):6709–6715PubMedPubMedCentralCrossRefGoogle Scholar
  8. Austin RN, Groves JT (2011) Alkane-oxidizing metalloenzymes in the carbon cycle. Metallomics 3(8):775–787PubMedCrossRefGoogle Scholar
  9. Bælum J, Borglin S, Chakraborty R, Fortney JL, Lamendella R, Mason OU, Auer M, Zemla M, Bill M, Conrad ME (2012) Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environ Microbiol 14(9):2405–2416PubMedCrossRefGoogle Scholar
  10. Bagi A, Pampanin DM, Brakstad OG, Kommedal R (2013) Estimation of hydrocarbon biodegradation rates in marine environments: a critical review of the Q10 approach. Mar Environ Res 89:83–90PubMedCrossRefGoogle Scholar
  11. Bagi A, Pampanin DM, Lanzén A, Bilstad T, Kommedal R (2014) Naphthalene biodegradation in temperate and arctic marine microcosms. Biodegradation 25(1):111–125PubMedCrossRefGoogle Scholar
  12. Bano N, Ruffin S, Ransom B, Hollibaugh JT (2004) Phylogenetic composition of Arctic Ocean archaeal assemblages and comparison with Antarctic assemblages. Appl Environ Microbiol 70(2):781–789PubMedPubMedCentralCrossRefGoogle Scholar
  13. Battersby N (1990) A review of biodegradation kinetics in the aquatic environment. Chemosphere 21(10-11):1243–1284CrossRefGoogle Scholar
  14. Beolchini F, Rocchetti L, Regoli F, Dell’Anno A (2010) Bioremediation of marine sediments contaminated by hydrocarbons: experimental analysis and kinetic modeling. J Hazard Mater 182(1):403–407PubMedCrossRefGoogle Scholar
  15. Berger F, Morellet N, Menu F, Potier P (1996) Cold shock and cold acclimation proteins in the psychrotrophic bacterium Arthrobacter globiformis SI55. J Bacteriol 178(11):2999–3007PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bienhold C, Boetius A, Ramette A (2012) The energy-diversity relationship of complex bacterial communities in Arctic deep-sea sediments. ISME J 6(4):724–732PubMedCrossRefGoogle Scholar
  17. Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ (2015) Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 13(11):677–690. doi: 10.1038/nrmicro3522 PubMedCrossRefGoogle Scholar
  18. Bordenave S, Goñi-urriza M, Vilette C, Blanchard S, Caumette P, Duran R (2008) Diversity of ring-hydroxylating dioxygenases in pristine and oil contaminated microbial mats at genomic and transcriptomic levels. Environ Microbiol 10(12):3201–3211PubMedCrossRefGoogle Scholar
  19. Børresen M, Rike A (2007) Effects of nutrient content, moisture content and salinity on mineralization of hexadecane in an Arctic soil. Cold Reg Sci Technol 48(2):129–138CrossRefGoogle Scholar
  20. Bowman JP, McCuaig RD (2003) Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69(5):2463–2483PubMedPubMedCentralCrossRefGoogle Scholar
  21. Braddock JF, Ruth ML, Catterall PH, Walworth JL, McCarthy KA (1997) Enhancement and inhibition of microbial activity in hydrocarbon-contaminated arctic soils: implications for nutrient-amended bioremediation. Environ Sci Technol 31(7):2078–2084CrossRefGoogle Scholar
  22. Bragg JR, Prince RC, Harner EJ, Atlas RM (1993) Bioremediation effectiveness following the Exxon Valdez spill. In: International oil spill conference, vol 1. American Petroleum Institute, Washington, DC, pp 435–447Google Scholar
  23. Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368:413–418CrossRefGoogle Scholar
  24. Brakstad OG (2008) Natural and stimulated biodegradation of petroleum in cold marine environments. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 389–407CrossRefGoogle Scholar
  25. Brakstad OG, Bonaunet K (2006) Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0–5°C) and bacterial communities associated with degradation. Biodegradation 17(1):71–82PubMedCrossRefGoogle Scholar
  26. Brakstad OG, Bonaunet K, Nordtug T, Johansen Ø (2004) Biotransformation and dissolution of petroleum hydrocarbons in natural flowing seawater at low temperature. Biodegradation 15(5):337–346PubMedCrossRefGoogle Scholar
  27. Brakstad OG, Nonstad I, Faksness L-G, Brandvik PJ (2008) Responses of microbial communities in Arctic sea ice after contamination by crude petroleum oil. Microb Ecol 55(3):540–552PubMedCrossRefGoogle Scholar
  28. Brakstad OG, Nordtug T, Throne-Hoist M, Netzer R, Stoeckel DM, Atlas RM (2015a) Microbial communities related to biodegradation of dispersed Macondo oil at low seawater temperature with Norwegian coastal seawater. Microb Biotechnol 8(6):989–998PubMedPubMedCentralCrossRefGoogle Scholar
  29. Brakstad OG, Nordtug T, Throne-Holst M (2015b) Biodegradation of dispersed Macondo oil in seawater at low temperature and different oil droplet sizes. Mar Pollut Bull 93(1):144–152PubMedCrossRefGoogle Scholar
  30. Brandvik PJ (1997) Optimisation of oil spill dispersants on weathered oils. A new approach using experimental design and multivariate data analyses. Norwegian University of Science and Technology, NTNU Trondheim, NorwayGoogle Scholar
  31. Breezee J, Cady N, Staley J (2004) Subfreezing growth of the sea ice bacterium “Psychromonas ingrahamii”. Microb Ecol 47(3):300–304PubMedCrossRefGoogle Scholar
  32. Brinkmeyer R, Knittel K, Jurgens J, Weyland H, Amann R, Helmke E (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol 69(11):6610–6619PubMedPubMedCentralCrossRefGoogle Scholar
  33. Brodkorb D, Gottschall M, Marmulla R, Lüddeke F, Harder J (2010) Linalool dehydratase-isomerase, a bifunctional enzyme in the anaerobic degradation of monoterpenes. J Biol Chem 285(40):30436–30442PubMedPubMedCentralCrossRefGoogle Scholar
  34. Camenzuli D, Freidman BL (2015) On-site and in situ remediation technologies applicable to petroleum hydrocarbon contaminated sites in the Antarctic and Arctic. Pol Res 34(24492). doi: 10.3402/polar.v34.24492
  35. Camilli R, Reddy CM, Yoerger DR, Van Mooy BA, Jakuba MV, Kinsey JC, McIntyre CP, Sylva SP, Maloney JV (2010) Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330(6001):201–204PubMedCrossRefGoogle Scholar
  36. Chen E, Overall JC, Phillips C (1974) Spreading of crude oil on an ice surface. Can J Chem Eng 52(1):71–74CrossRefGoogle Scholar
  37. Cheng Q, Thomas S, Rouviere P (2002) Biological conversion of cyclic alkanes and cyclic alcohols into dicarboxylic acids: biochemical and molecular basis. Appl Microbiol Biotechnol 58(6):704–711PubMedCrossRefGoogle Scholar
  38. Chintalapati S, Kiran M, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol (Noisy-le-Grand) 50(5):631–642Google Scholar
  39. De La Rocha DL, Passow U (2007) Factors influencing the sinking of POC and the efficiency of the biological carbon pump. Deep Sea Res II Top Stud Oceanogr 54(5):639–658CrossRefGoogle Scholar
  40. Cohen Y (2002) Bioremediation of oil by marine microbial mats. Int Microbiol 5(4):189–193PubMedCrossRefGoogle Scholar
  41. Comeau AM, Li WKW, Tremblay J-É, Carmack EC, Lovejoy C (2011) Arctic Ocean microbial community structure before and after the 2007 Record Sea Ice Minimum. PLoS One 6(11):e27492PubMedPubMedCentralCrossRefGoogle Scholar
  42. Cowie ROM, Maas EW, Ryan KG (2011) Archaeal diversity revealed in Antarctic sea ice. Antarct Sci 23(6):531–536CrossRefGoogle Scholar
  43. Crisafi F, Giuliano L, Yakimov MM, Azzaro M, Denaro R (2016) Isolation and degradation potential of a cold-adapted oil/PAH-degrading marine bacterial consortium from Kongsfjorden (Arctic region). Rend Lincei Sci Fis Nat 27(1):261–270CrossRefGoogle Scholar
  44. Cui Z, Lai Q, Dong C, Shao Z (2008) Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic ridge. Environ Microbiol 10(8):2138–2149PubMedPubMedCentralCrossRefGoogle Scholar
  45. Daly KL, Passow U, Chanton J, Hollander D (2016) Assessing the impacts of oil-associated marine snow formation and sedimentation during and after the deepwater horizon oil spill. Anthropocene 13:18–33. doi: 10.1016/j.ancene.2016.01.006 CrossRefGoogle Scholar
  46. Delille D, Basseres A, Dessommes A (1997) Seasonal variation of bacteria in sea ice contaminated by diesel fuel and dispersed crude oil. Microb Ecol 33(2):97–105PubMedCrossRefGoogle Scholar
  47. Delille D, Basseres A, Dessommes A (1998) Effectiveness of bioremediation for oil-polluted Antarctic seawater. Polar Biol 19(4):237–241CrossRefGoogle Scholar
  48. Deppe U, Richnow HH, Michaelis W, Antranikian G (2005) Degradation of crude oil by an arctic microbial consortium. Extremophiles 9(6):461–470PubMedCrossRefGoogle Scholar
  49. Dong C, Bai X, Sheng H, Jiao L, Zhou H, Shao Z (2015) Distribution of PAHs and the PAH-degrading bacteria in the deep-sea sediments of the high-latitude Arctic Ocean. Biogeosciences 12(7):2163–2177. doi: 10.5194/bg-12-2163-2015 CrossRefGoogle Scholar
  50. Dubbels BL, Sayavedra-Soto LA, Arp DJ (2007) Butane monooxygenase of ‘Pseudomonas butanovora’: purification and biochemical characterization of a terminal-alkane hydroxylating diiron monooxygenase. Microbiology 153(6):1808–1816PubMedCrossRefGoogle Scholar
  51. Dubinsky EA, Conrad ME, Chakraborty R, Bill M, Borglin SE, Hollibaugh JT, Mason OU, Piceno YM, Reid FC, Stringfellow WT, Tom LM, Hazen TC, Andersen GL (2013) Succession of hydrocarbon-degrading bacteria in the aftermath of the deepwater horizon oil spill in the Gulf of Mexico. Environ Sci Technol 47(19):10860–10867. doi: 10.1021/es401676y PubMedCrossRefGoogle Scholar
  52. Eriksson M, Sodersten E, Yu Z, Dalhammar G, Mohn WW (2003) Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Appl Environ Microbiol 69(1):275–284PubMedPubMedCentralCrossRefGoogle Scholar
  53. Faksness L-G, Brandvik PJ (2008a) Distribution of water soluble components from oil encapsulated in Arctic sea ice: Summary of three field seasons. Cold Reg Sci Technol 54(2):106–114CrossRefGoogle Scholar
  54. Faksness LG, Brandvik PJ (2008b) Distribution of water soluble components from Arctic marine oil spills - A combined laboratory and field study. Cold Reg Sci Technol 54(2):97–105CrossRefGoogle Scholar
  55. Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A 104(13):5602–5607PubMedPubMedCentralCrossRefGoogle Scholar
  56. Fiala M, Delille D (1999) Annual changes of microalgae biomass in Antarctic sea ice contaminated by crude oil and diesel fuel. Polar Biol 21(6):391–396CrossRefGoogle Scholar
  57. Fields PA (2001) Review: Protein function at thermal extremes: balancing stability and flexibility. Comp Biochem Physiol A Mol Integr Physiol 129(2):417–431PubMedCrossRefGoogle Scholar
  58. Fingas M, Hollebone B (2003) Review of behaviour of oil in freezing environments. Mar Pollut Bull 47(9):333–340PubMedCrossRefGoogle Scholar
  59. Fukunaga N, Sahara T, Takada Y (1999) Bacterial adaptation to low temperature: Implications for cold-inducible genes. J Plant Res 112(2):263–272CrossRefGoogle Scholar
  60. Galand PE, Casamayor EO, Kirchman DL, Lovejoy C (2009) Ecology of the rare microbial biosphere of the Arctic Ocean. Proc Natl Acad Sci U S A 106(52):22427–22432PubMedPubMedCentralCrossRefGoogle Scholar
  61. Garneau M-È, Michel C, Meisterhans G, Fortin N, King TL, Greer CW, Lee K (2016) Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada). FEMS Microbiol Ecol 92(10). doi: 10.1093/femsec/fiw130
  62. Gerdes B, Brinkmeyer R, Dieckmann G, Helmke E (2005) Influence of crude oil on changes of bacterial communities in Arctic sea-ice. FEMS Microbiol Ecol 53(1):129–139PubMedCrossRefGoogle Scholar
  63. Gerdes B, Dieckmann G (2006) Biological degradation of crude oil in sea ice. In: Juurmaa K (ed) Abstract of the report “Growth Project GRD-2000-30112 ARCOP Technology and Environment, WP 6 Workshop Activities”. Helsinki, FinlandGoogle Scholar
  64. Gittel A, Donhauser J, Røy H, Girguis PR, Jørgensen BB, Kjeldsen KU (2015) Ubiquitous presence and novel diversity of anaerobic alkane degraders in cold marine sediments. Front Microbiol 6:1414. doi: 10.3389/fmicb.2015.01414 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Gough M, Rowland S (1990) Characterization of unresolved complex mixtures of hydrocarbons in petroleum. Nature 344(6267):648–650CrossRefGoogle Scholar
  66. Goyal A, Zylstra G (1997) Genetics of naphthalene and phenanthrene degradation by Comamonas testosteroni. J Ind Microbiol Biotechnol 19(5-6):401–407PubMedCrossRefGoogle Scholar
  67. Groudieva T, Kambourova M, Yusef H, Royter M, Grote R, Trinks H, Antranikian G (2004) Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles 8(6):475–488PubMedCrossRefGoogle Scholar
  68. Grund A, Shapiro J, Fennewald M, Bacha P, Leahy J, Markbreiter K, Nieder M, Toepfer M (1975) Regulation of alkane oxidation in Pseudomonas putida. J Bacteriol 123(2):546–556PubMedPubMedCentralGoogle Scholar
  69. Guénette CC, Sergy GA, Owens EH, Prince RC, Lee K (2003) Experimental design of the Svalbard shoreline field trials. Spill Sci Technol Bull 8(3):245–256CrossRefGoogle Scholar
  70. Gutierrez T, Berry D, Yang T, Mishamandani S, McKay L, Teske A, Aitken MD (2013) Role of bacterial exopolysaccharides (EPS) in the fate of the oil released during the deepwater horizon oil spill. PLoS One 8(6):e67717PubMedPubMedCentralCrossRefGoogle Scholar
  71. Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15(3):205–214PubMedCrossRefGoogle Scholar
  72. Harayama S, Kishira H, Kasai Y, Shutsubo K (1999) Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol 1(1):63–70PubMedGoogle Scholar
  73. Hasinger M, Scherr KE, Lundaa T, Bräuer L, Zach C, Loibner AP (2012) Changes in iso-and n-alkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions. J Biotechnol 157(4):490–498PubMedCrossRefGoogle Scholar
  74. Hatam I, Charchuk R, Lange B, Beckers J, Haas C, Lanoil B (2014) Distinct bacterial assemblages reside at different depths in Arctic multiyear sea ice. FEMS Microbiol Ecol 90(1):115–125. doi: 10.1111/1574-6941.12377 PubMedCrossRefGoogle Scholar
  75. Hatam I, Lange B, Beckers J, Haas C, Lanoil B (2016) Bacterial communities from Arctic seasonal sea ice are more compositionally variable than those from multi-year sea ice. ISME J 10(10):2543–2552. doi: 10.1038/ismej.2016.4 PubMedCrossRefGoogle Scholar
  76. Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330(6001):204–208PubMedCrossRefGoogle Scholar
  77. Hazen TC, Prince RC, Mahmoudi N (2016) Marine oil biodegradation. Environ Sci Technol 50(5):2121–2129PubMedCrossRefGoogle Scholar
  78. Head IM, Jones DM, Roling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4(3):173–182PubMedCrossRefGoogle Scholar
  79. Hearn EM, Patel DR, Lepore BW, Indic M, van den Berg B (2009) Transmembrane passage of hydrophobic compounds through a protein channel wall. Nature 458(7236):367–370PubMedPubMedCentralCrossRefGoogle Scholar
  80. Hokstad JN, Daling PS, Buffagni M, Johnsen S (1999) Chemical and ecotoxicological characterisation of oil–water systems. Spill Sci Technol Bull 5(1):75–80CrossRefGoogle Scholar
  81. Inagaki F, Sakihama Y, Inoue A, Kato C, Horikoshi K (2002) Molecular phylogenetic analyses of reverse-transcribed bacterial rRNA obtained from deep-sea cold seep sediments. Environ Microbiol4 (5):277-286Google Scholar
  82. Jobst B, Schuhle K, Linne U, Heider J (2010) ATP-dependent carboxylation of acetophenone by a novel type of carboxylase. J Bacteriol 192(5):1387–1394PubMedPubMedCentralCrossRefGoogle Scholar
  83. Johansen Ø, Rye H, Cooper C (2003) DeepSpill-Field study of a simulated oil and gas blowout in deep water. Spill Sci Technol Bull 8:433–443CrossRefGoogle Scholar
  84. Johnson J, Hill R (2003) Sediment microbes of deep-sea bioherms on the Northwest Shelf of Australia. Microb Ecol 46(1):55–61PubMedCrossRefGoogle Scholar
  85. Junge K, Eicken H, Deming JW (2003) Motility of Colwellia psychrerythraea strain 34H at subzero temperatures. Appl Environ Microbiol 69(7):4282–4284PubMedPubMedCentralCrossRefGoogle Scholar
  86. Junge K, Eicken H, Deming JW (2004) Bacterial activity at −2 to −20°C in Arctic wintertime sea ice. Appl Environ Microbiol 70(1):550–557PubMedPubMedCentralCrossRefGoogle Scholar
  87. Junge K, Eicken H, Swanson BD, Deming JW (2006) Bacterial incorporation of leucine into protein down to −20°C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 52(3):417–429PubMedCrossRefGoogle Scholar
  88. Kessler JD, Valentine DL, Redmond MC, Du M, Chan EW, Mendes SD, Quiroz EW, Villanueva CJ, Shusta SS, Werra LM (2011) A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science 331(6015):312–315PubMedCrossRefGoogle Scholar
  89. Khelifi N, Grossi V, Hamdi M, Dolla A, Tholozan J-L, Ollivier B, Hirschler-Réa A (2010) Anaerobic oxidation of fatty acids and alkenes by the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus. Appl Environ Microbiol 76(9):3057–3060PubMedPubMedCentralCrossRefGoogle Scholar
  90. Killops S, Al-Juboori M (1990) Characterisation of the unresolved complex mixture (UCM) in the gas chromatograms of biodegraded petroleums. Org Geochem 15(2):147–160CrossRefGoogle Scholar
  91. King G, Kostka J, Hazen T, Sobecky P (2015) Microbial responses to the deepwater horizon oil spill: from coastal wetlands to the deep sea. Ann Rev Mar Sci 7:377–401PubMedCrossRefGoogle Scholar
  92. Kirchman DL, Cottrell MT, Lovejoy C (2010) The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ Microbiol 12(5):1132–1143PubMedCrossRefGoogle Scholar
  93. Kleindienst S, Seidel M, Ziervogel K, Grim S, Loftis K, Harrison S, Malkin SY, Perkins MJ, Field J, Sogin ML (2015) Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proc Natl Acad Sci U S A 112(48):14900–14905PubMedPubMedCentralCrossRefGoogle Scholar
  94. Kok M, Oldenhuis R, Van Der Linden M, Raatjes P, Kingma J, van Lelyveld PH, Witholt B (1989) The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression. J Biol Chem 264(10):5435–5441PubMedGoogle Scholar
  95. Kostichka K, Thomas SM, Gibson KJ, Nagarajan V, Cheng Q (2001) Cloning and characterization of a gene cluster for cyclododecanone oxidation in Rhodococcus ruber SC1. J Bacteriol 183(21):6478–6486PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kotani T, Yurimoto H, Kato N, Sakai Y (2007) Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5. J Bacteriol 189(3):886–893PubMedCrossRefGoogle Scholar
  97. Kovárová-Kovar K, Egli T (1998) Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 62(3):646–666PubMedPubMedCentralGoogle Scholar
  98. Krembs C, Eicken H, Deming JW (2011) Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. Proc Natl Acad Sci U S A 108(9):3653–3658PubMedPubMedCentralCrossRefGoogle Scholar
  99. Krembs C, Mock T, Gradinger R (2001) A mesocosm study of physical-biological interactions in artificial sea ice: effects of brine channel surface evolution and brine movement on algal biomass. Polar Biol 24(5):356–364CrossRefGoogle Scholar
  100. Laban NA, Selesi D, Jobelius C, Meckenstock RU (2009) Anaerobic benzene degradation by Gram-positive sulfate-reducing bacteria. FEMS Microbiol Ecol 68(3):300–311PubMedCrossRefGoogle Scholar
  101. Le Borgne S, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol 15(2-3):74–92PubMedCrossRefGoogle Scholar
  102. Learman DR, Henson MW, Thrash JC, Temperton B, Brannock PM, Santos SR, Mahon AR, Halanych KM (2016) Biogeochemical and microbial variation across 5500 km of Antarctic surface sediment implicates organic matter as a driver of benthic community structure. Front Microbiol 7:284. doi: 10.3389/fmicb.2016.00284 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Lee K, Merlin X (1999) Bioremediation of oil on shoreline environments: development of techniques and guidelines. Pure Appl Chem 71(1):161–171CrossRefGoogle Scholar
  104. Lee K, Nedwed T, Prince RC, Palandro D (2013) Lab tests on the biodegradation of chemically dispersed oil should consider the rapid dilution that occurs at sea. Mar Pollut Bull 73(1):314–318PubMedCrossRefGoogle Scholar
  105. Lee K, Weise AM, St-Pierre S (1996) Enhanced oil biodegradation with mineral fine interaction. Spill Sci Technol Bull 3(4):263–267CrossRefGoogle Scholar
  106. Leuthner B, Heider J (2000) Anaerobic toluene catabolism of Thauera aromatica: the bbs operon codes for enzymes of beta oxidation of the intermediate benzylsuccinate. J Bacteriol 182(2):272–277PubMedPubMedCentralCrossRefGoogle Scholar
  107. Lindstrom JE, Braddock JF (2002) Biodegradation of petroleum hydrocarbons at low temperature in the presence of the dispersant Corexit 9500. Mar Pollut Bull 44(8):739–747PubMedCrossRefGoogle Scholar
  108. Lofthus S, Netzer R, Lewin A, Brakstad OG (2015) Successions of bacteria adhering to oil surfaces during biodegradation of crude oil in natural seawater at temperatures from 0 to 20°C. In: Abstracts of the 115th General Meeting of the American Society for Microbiology, New Orleans, Louisiana, May 30-June 2 2015Google Scholar
  109. Lu Z, Deng Y, Van Nostrand JD, He Z, Voordeckers J, Zhou A, Lee Y-J, Mason OU, Dubinsky EA, Chavarria KL (2012) Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. ISME J 6(2):451–460PubMedCrossRefGoogle Scholar
  110. Lu X, Zhang T, Fang HH-P, Leung KM, Zhang G (2011) Biodegradation of naphthalene by enriched marine denitrifying bacteria. Int Biodeter Biodegr 65(1):204–211CrossRefGoogle Scholar
  111. Luria CM, Ducklow HW, Amaral-Zettler LA (2014) Marine bacterial, archaeal and eukaryotic diversity and community structure on the continental shelf of the western Antarctic Peninsula. Aquat Microb Ecol 73(2):107–121CrossRefGoogle Scholar
  112. Luz A, Pellizari V, Whyte L, Greer C (2004) A survey of indigenous microbial hydrocarbon degradation genes in soils from Antarctica and Brazil. Can J Microbiol 50(5):323–333PubMedCrossRefGoogle Scholar
  113. Lynch JM, Moffat AJ (2005) Bioremediation–prospects for the future application of innovative applied biological research. Ann Appl Biol 146(2):217–221CrossRefGoogle Scholar
  114. Macnaughton SJ, Swannell R, Daniel F, Bristow L (2003) Biodegradation of dispersed Forties crude and Alaskan North Slope oils in microcosms under simulated marine conditions. Spill Sci Technol Bull 8(2):179–186CrossRefGoogle Scholar
  115. Maier T, Förster H-H, Asperger O, Hahn U (2001) Molecular characterization of the 56-kDa CYP153 from Acinetobacter sp. EB104. Biochem Biophys Res Commun 286(3):652–658PubMedCrossRefGoogle Scholar
  116. Mallick S, Chakraborty J, Dutta TK (2011) Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: a review. Crit Rev Microbiol 37(1):64–90PubMedCrossRefGoogle Scholar
  117. Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162(3):346–361PubMedCrossRefGoogle Scholar
  118. Margesin R, Schinner F (1997) Efficiency of indigenous and inoculated cold-adapted soil microorganisms for biodegradation of diesel oil in alpine soils. Appl Environ Microbiol 63(7):2660–2664PubMedPubMedCentralGoogle Scholar
  119. Margesin R, Schinner F (1999) Biological decontamination of oil spills in cold environments. J Chem Technol Biotechnol 74(5):381–389CrossRefGoogle Scholar
  120. Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56(5-6):650–663PubMedCrossRefGoogle Scholar
  121. Mason OU, Han J, Woyke T, Jansson JK (2014) Single-cell genomics reveals features of a Colwellia species that was dominant during the deepwater horizon oil spill. Front Microbiol 5:29–36CrossRefGoogle Scholar
  122. McFarlin K, Leigh MB, Perkins R (2014a) Biodegradation of oil and dispersed oil by Arctic marine microorganisms. In: International oil spill conference proceedings, May 2014, vol 1. American Petroleum Institute, pp 300317. doi:10.7901/2169-3358-2014-1-300317.1Google Scholar
  123. McFarlin KM, Prince RC, Perkins R, Leigh MB (2014b) Biodegradation of dispersed oil in arctic seawater at -1°C. PLoS One 9(1):e84297PubMedPubMedCentralCrossRefGoogle Scholar
  124. Methé BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupu R, Nelson WC, Dodson RJ (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci U S A 102(31):10913–10918PubMedPubMedCentralCrossRefGoogle Scholar
  125. Michaud L, Lo Giudice A, Saitta M, De Domenico M, Bruni V (2004) The biodegradation efficiency on diesel oil by two psychrotrophic Antarctic marine bacteria during a two-month-long experiment. Mar Pollut Bull 49(5–6):405–409PubMedCrossRefGoogle Scholar
  126. Miyasaka T, Asami H, Watanabe K (2006) Impacts of bioremediation schemes on bacterial population in naphthalene-contaminated marine sediments. Biodegradation 17(3):227–235PubMedCrossRefGoogle Scholar
  127. Mohanty G, Mukherji S (2008) Biodegradation rate of diesel range n-alkanes by bacterial cultures Exiguobacterium aurantiacum and Burkholderia cepacia. Int Biodeter Biodegr 61(3):240–250CrossRefGoogle Scholar
  128. Moody DE, Walsh SL, Rollins DE, Neff JA, Huang W (2004) Ketoconazole, a cytochrome P450 3A4 inhibitor, markedly increases concentrations of Levo-acetyl-α-methadol in ppioid-naive individuals. Clin Pharmacol Ther 76(2):154–166PubMedCrossRefGoogle Scholar
  129. Moriya K, Horikoshi K (1993) Isolation of a benzene-tolerant bacterium and its hydrocarbon degradation. J Ferment Bioeng 76(3):168–173CrossRefGoogle Scholar
  130. Nichols CM, Bowman JP, Guezennec J (2005) Effects of incubation temperature on growth and production of exopolysaccharides by an Antarctic sea ice bacterium grown in batch culture. Appl Environ Microbiol 71(7):3519–3523PubMedPubMedCentralCrossRefGoogle Scholar
  131. Nikolopoulou M, Pasadakis N, Kalogerakis N (2013) Evaluation of autochthonous bioaugmentation and biostimulation during microcosm-simulated oil spills. Mar Pollut Bull 72(1):165–173PubMedCrossRefGoogle Scholar
  132. North EW, Adams E, Schlag ZZ, Sherwood CR, He RR, Hyun KHK, Socolofsky SA (2011) Simulating oil droplet dispersal from the deepwater horizon spill with a lagrangian approach. In: Liu Y, Macfadyen A, Ji Z-G, Weisber RH (eds) Monitoring and modeling the deepwater horizon oil spill: a record-breaking enterprise. American Geophysical Union, Washington, DC, pp 217–226. doi: 10.1029/2011GM001102 CrossRefGoogle Scholar
  133. NRC (1985) Oil in the sea Inputs, fates, and effects, vol 1. National Academy Press, Washington, DCGoogle Scholar
  134. Obbard J, Ng K, Xu R (2004) Bioremediation of petroleum contaminated beach sediments: use of crude palm oil and fatty acids to enhance indigenous biodegradation. Water Air Soil Pollut 157(1-4):149–161CrossRefGoogle Scholar
  135. Owens EH, Sergy GA, Guénette CC, Prince RC, Lee K (2003) The reduction of stranded oil by in situ shoreline treatment options. Spill Sci Technol Bull 8(3):257–272CrossRefGoogle Scholar
  136. Païssé S, Duran R, Coulon F, Goñi-Urriza M (2011) Are alkane hydroxylase genes (alkB) relevant to assess petroleum bioremediation processes in chronically polluted coastal sediments? Appl Microbiol Biotechnol 92(4):835–844PubMedCrossRefGoogle Scholar
  137. Païssé S, Goñi-Urriza M, Coulon F, Duran R (2010) How a bacterial community originating from a contaminated coastal sediment responds to an oil input. Microb Ecol 60(2):394–405PubMedCrossRefGoogle Scholar
  138. Païssé S, Goñi-Urriza M, Stadler T, Budzinski H, Duran R (2012) Ring-hydroxylating dioxygenase (RHD) expression in a microbial community during the early response to oil pollution. FEMS Microbiol Ecol 80(1):77–86PubMedCrossRefGoogle Scholar
  139. Passow U (2016) Formation of rapidly-sinking, oil-associated marine snow. Deep Sea Res II Top Stud Oceanogr 129:232–240. doi: 10.1016/j.dsr2.2014.10.001 CrossRefGoogle Scholar
  140. Passow U, Ziervogel K, Asper V, Diercks A (2012) Marine snow formation in the aftermath of the deepwater horizon oil spill in the Gulf of Mexico. Environ Res Lett 7(3):035301CrossRefGoogle Scholar
  141. Payne JR, Hachmeister LE, McNabb GD Jr, Sharpe HE, Smith GS, Menen CA (1991) Brine-induced advection of dissolved aromatic hydrocarbons to arctic bottom waters. Environ Sci Technol 25(5):940–951CrossRefGoogle Scholar
  142. Payne JR, McNabb GD (1991) Oil-weathering behavior in Arctic environments. Polar Res 10(2):631–662CrossRefGoogle Scholar
  143. Pelletier E, Delille D, Delille B (2004) Crude oil bioremediation in sub-Antarctic intertidal sediments: chemistry and toxicity of oiled residues. Mar Environ Res 57(4):311–327PubMedCrossRefGoogle Scholar
  144. Peng R-H, Xiong A-S, Xue Y, Fu X-Y, Gao F, Zhao W, Tian Y-S, Yao Q-H (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32(6):927–955PubMedCrossRefGoogle Scholar
  145. Powell SM, Ferguson SH, Bowman JP, Snape I (2006) Using real-time PCR to assess changes in the hydrocarbon-degrading microbial community in Antarctic soil during bioremediation. Microb Ecol 52(3):523–532PubMedCrossRefGoogle Scholar
  146. Prince RC (2005) The microbiology of marine oil spill bioremediation. In: Ollivier B, Magot M (eds) Petroleum microbiology. American Society of Microbiology, Washington, DC, pp 317–335CrossRefGoogle Scholar
  147. Prince RC (2008) Petroleum spill bioremediation in marine environments. Crit Rev Microbiol 19(4):217–240CrossRefGoogle Scholar
  148. Prince R (2010) Bioremediation of marine oil spills. In: Timmis KN Timmis KN, McGenity TJ, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, pp 2617-2630Google Scholar
  149. Prince RC, Bare RE, Garrett RM, Grossman MJ, Haith CE, Keim LG, Lee K, Holtom GJ, Lambert P, Sergy GA (2003) Bioremediation of stranded oil on an Arctic shoreline. Spill Sci Technol Bull 8(3):303-312Google Scholar
  150. Prince R, Clark J (2004) Bioremediation of marine oil spills. Stud Surf Sci Catal 151:495–512CrossRefGoogle Scholar
  151. Prince RC, McFarlin KM, Butler JD, Febbo EJ, Wang FC, Nedwed TJ (2013) The primary biodegradation of dispersed crude oil in the sea. Chemosphere 90(2):521–526PubMedCrossRefGoogle Scholar
  152. Prince RC, Parkerton TF, Lee C (2007) The primary aerobic biodegradation of gasoline hydrocarbons. Environ Sci Technol 41(9):3316–3321PubMedCrossRefGoogle Scholar
  153. Rabus R, Boll M, Golding B, Wilkes H (2016) Anaerobic degradation of p-alkylated benzoates and toluenes. J Mol Microbiol Biotechnol 26(1-3):63–75PubMedCrossRefGoogle Scholar
  154. Raymond JA, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61(2):214–221PubMedCrossRefGoogle Scholar
  155. Reddy CM, Arey JS, Seewald JS, Sylva SP, Lemkau KL, Nelson RK, Carmichael CA, McIntyre CP, Fenwick J, Ventura GT (2012) Composition and fate of gas and oil released to the water column during the deepwater horizon oil spill. Proc Natl Acad Sci U S A 109(50):20229–20234PubMedCrossRefGoogle Scholar
  156. Redmond MC, Valentine DL (2012) Natural gas and temperature structured a microbial community response to the deepwater horizon oil spill. Proc Natl Acad Sci U S A 109(50):20292–20297PubMedCrossRefGoogle Scholar
  157. Reed M, Daling PS, Brakstad OG, Singsaas I, Faksness L-G, Hetland B, Ekrol N (2000) OSCAR2000: a multi-component 3-dimensional oil spill contingency and response model. In: Proceedings of the 23 Arctic and Marine Oilspill Program (AMOP) Technical Seminar, Albeta, Canada, June 14-16, 2000Google Scholar
  158. Ribicic D, Netzer R, Lewin A, Brakstad OG (2015) Biodegradation of dispersed oil at low seawater temperature (5°C). Comparison of chemistry and microbiology In: Abstracts of the 115th general meeting of the American Society for Microbiology, New Orleans, Louisiana, May 30-June 2 2015Google Scholar
  159. Rike AG, Haugen KB, Børresen M, Engene B, Kolstad P (2003) In situ biodegradation of petroleum hydrocarbons in frozen arctic soils. Cold Reg Sci Technol 37(2):97–120CrossRefGoogle Scholar
  160. Rojo F (2009) Degradation of alkanes by bacteria: Minireview. Environ Microbiol 11(10):2477–2490PubMedCrossRefGoogle Scholar
  161. Rotaru AE, Probian C, Wilkes H, Harder J (2010) Highly enriched Betaproteobacteria growing anaerobically with p-xylene and nitrate. FEMS Microbiol Ecol 71(3):460–468PubMedCrossRefGoogle Scholar
  162. Ruberto L, Vazquez SC, Mac Cormack WP (2003) Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil. Int Biodeter Biodegr 52(2):115–125CrossRefGoogle Scholar
  163. Ruff SE, Probandt D, Zinkann A-C, Iversen MH, Klaas C, Würzberg L, Krombholz N, Wolf-Gladrow D, Amann R, Knittel K (2014) Indications for algae-degrading benthic microbial communities in deep-sea sediments along the Antarctic Polar Front. Deep Sea Res II Top Stud Oceanogr 108:6–16. doi: 10.1016/j.dsr2.2014.05.011 CrossRefGoogle Scholar
  164. Sawamura S, Nagaoka K, Machikawa T (2001) Effects of pressure and temperature on the solubility of alkylbenzenes in water: volumetric properties and hydrophobic hydration. J Phys Chem B 105:2429–2436CrossRefGoogle Scholar
  165. Schedler M, Hiessl R, Valladares Juárez AG, Gust G, Müller R (2014) Effect of high pressure on hydrocarbon-degrading bacteria. AMB Express 4(1):7. doi: 10.1186/s13568-014-0077-0 CrossRefGoogle Scholar
  166. Schwarz J, Walker J, Colwell R (1974) Deep-sea bacteria: growth and utilization of hydrocarbons at ambient and in situ pressure. Appl Microbiol 28(6):982–986PubMedPubMedCentralGoogle Scholar
  167. Sergy GA, Guénette CC, Owens EH, Prince RC, Lee K (2003) In-situ treatment of oiled sediment shorelines. Spill Sci Technol Bull 8(3):237–244CrossRefGoogle Scholar
  168. Simon MJ, Osslund TD, Saunders R, Ensley BD, Suggs S, Harcourt A, Wen-chen S, Cruder DL, Gibson DT, Zylstra GJ (1993) Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene 127(1):31–37PubMedCrossRefGoogle Scholar
  169. Siron R, Pelletier E, Brochu C (1995) Environmental factors influencing the biodegradation of petroleum hydrocarbons in cold seawater. Arch Environ Contam Toxicol 28(4):406–416CrossRefGoogle Scholar
  170. Si-Zhong Y, Hui-Jun J, Zhi W, Rui-Xia H, Yan-Jun J, Xiu-Mei L, Shao-Peng Y (2009) Bioremediation of oil spills in cold environments: a review. Pedosphere 19(3):371–381CrossRefGoogle Scholar
  171. Smith AJ, Flemings PB, Fulton PM (2014) Hydrocarbon flux from natural deepwater Gulf of Mexico vents. Earth Planet Sci Lett 395:241–253CrossRefGoogle Scholar
  172. Smith VH, Graham DW, Cleland DD (1998) Application of resource-ratio theory to hydrocarbon biodegradation. Environ Sci Technol 32(21):3386–3395CrossRefGoogle Scholar
  173. Stout SA, Payne JR (2016) Macondo oil in deep-sea sediments: Part 1–sub-sea weathering of oil deposited on the seafloor. Mar Pollut Bull 111(1):365-380Google Scholar
  174. Sutton P, Lewis C, Rowland S (2005) Isolation of individual hydrocarbons from the unresolved complex hydrocarbon mixture of a biodegraded crude oil using preparative capillary gas chromatography. Org Geochem 36(6):963–970CrossRefGoogle Scholar
  175. Sveum P, Ladousse A (1989) Biodegradation of oil in the Arctic: enhancement by oil-soluble fertilizer application. In: International Oil Spill Conference 1989, vol 1. American Petroleum Institute, Washington, DC, pp 439–446Google Scholar
  176. Swannell R, Lee K, McDonagh M (1996) Field evaluations of marine oil spill bioremediation. Microbiol Rev 60(2):342–365PubMedPubMedCentralGoogle Scholar
  177. Szaleniec M, Hagel C, Menke M, Nowak P, Witko M, Heider J (2007) Kinetics and mechanism of oxygen-independent hydrocarbon hydroxylation by ethylbenzene dehydrogenase. Biochemistry 46(25):7637–7646PubMedCrossRefGoogle Scholar
  178. Teske A, Durbin A, Ziervogel K, Cox C, Arnosti C (2011) Microbial community composition and function in permanently cold seawater and sediments from an Arctic fjord of Svalbard. Appl Environ Microbiol 77(6):2008–2018PubMedPubMedCentralCrossRefGoogle Scholar
  179. Tyagi M, da Fonseca MMR, de Carvalho CCCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22(2):231–241PubMedCrossRefGoogle Scholar
  180. Uraizee FA, Venosa AD, Suidan MT (1997) A Model for diffusion controlled bioavailability of crude oil components. Biodegradation 8(5):287–296PubMedCrossRefGoogle Scholar
  181. Valentine DL, Fisher GB, Bagby SC, Nelson RK, Reddy CM, Sylva SP, Woo MA (2014) Fallout plume of submerged oil from Deepwater Horizon. Proc Natl Acad Sci U S A 111(45):15906–15911PubMedPubMedCentralCrossRefGoogle Scholar
  182. Valentine DL, Kessler JD, Redmond MC, Mendes SD, Heintz MB, Farwell C, Hu L, Kinnaman FS, Yvon-Lewis S, Du M (2010) Propane respiration jump-starts microbial response to a deep oil spill. Science 330(6001):208–211PubMedCrossRefGoogle Scholar
  183. Valentine DL, Mezić I, Maćešić S, Črnjarić-Žic N, Ivić S, Hogan PJ, Fonoberov VA, Loire S (2012) Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption. Proc Natl Acad Sci U S A 109(50):20286–20291PubMedPubMedCentralCrossRefGoogle Scholar
  184. van Beilen JB, Wubbolts MG, Witholt B (1994) Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 5(3-4):161–174PubMedCrossRefGoogle Scholar
  185. van den Berg B (2005) The FadL family: unusual transporters for unusual substrates. Curr Opin Struct Biol 15(4):401–407PubMedCrossRefGoogle Scholar
  186. Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67(4):503–549PubMedPubMedCentralCrossRefGoogle Scholar
  187. Varadaraj R, Robbins ML, Bock J, Pace S, MacDonald D (1995) Dispersion and biodegradation of oil spills in water. In: Proceedings to the 1995 international oil spill conference. American Petroleum Institute, Washington, DC, pp 101–106Google Scholar
  188. Venosa A, Holder E (2007) Biodegradability of dispersed crude oil at two different temperatures. Mar Pollut Bull 54(5):545–553PubMedCrossRefGoogle Scholar
  189. Venosa AD, Zhu X (2003) Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands. Spill Sci Technol Bull 8(2):163–178CrossRefGoogle Scholar
  190. Wang B, Lai Q, Cui Z, Tan T, Shao Z (2008) A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp. P1. Environ Microbiol 10(8):1948–1963PubMedCrossRefGoogle Scholar
  191. Wang J, Sandoval K, Ding Y, Stoeckel D, Minard-Smith A, Andersen G, Dubinsky EA, Atlas R, Gardinali P (2016) Biodegradation of dispersed Macondo crude oil by indigenous Gulf of Mexico microbial communities. Sci Total Environ 557:453-468Google Scholar
  192. Watson J, Jones D, Swannell R, Van Duin A (2002) Formation of carboxylic acids during aerobic biodegradation of crude oil and evidence of microbial oxidation of hopanes. Org Geochem 33(10):1153–1169CrossRefGoogle Scholar
  193. Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76(6):1209–1221PubMedCrossRefGoogle Scholar
  194. Whyte LG, Bourbonniere L, Greer CW (1997) Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl Environ Microbiol 63(9):3719–3723PubMedPubMedCentralGoogle Scholar
  195. Whyte LG, Hawari J, Zhou E, Bourbonnière L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64(7):2578–2584PubMedPubMedCentralGoogle Scholar
  196. Whyte LG, Schultz A, Van Beilen J, Luz A, Pellizari V, Labbé D, Greer C (2002b) Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol Ecol 41(2):141–150PubMedGoogle Scholar
  197. Whyte L, Smits T, Labbe D, Witholt B, Greer C, Van Beilen J (2002a) Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl Environ Microbiol 68(12):5933–5942PubMedPubMedCentralCrossRefGoogle Scholar
  198. Yakimov MM, Gentile G, Bruni V, Cappello S, D'Auria G, Golyshin PN, Giuliano L (2004) Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria. FEMS Microbiol Ecol 49(3):419–432PubMedCrossRefGoogle Scholar
  199. Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham W-R, Lünsdorf H, Timmis KN, Golyshin PN (2003) Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53(3):779–785PubMedCrossRefGoogle Scholar
  200. Yergeau E, Sanschagrin S, Beaumier D, Greer CW (2012) Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils. PLoS One 7(1):e30058PubMedPubMedCentralCrossRefGoogle Scholar
  201. Zaki S, Farag S, Elreesh GA, Elkady M, Nosier M, El Abd D (2011) Characterization of bioflocculants produced by bacteria isolated from crude petroleum oil. Int J Environ Sci Technol 8(4):831–840CrossRefGoogle Scholar
  202. Zhang T, Gannon SM, Nevin KP, Franks AE, Lovley DR (2010) Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol 12(4):1011–1020PubMedCrossRefGoogle Scholar
  203. Zhou N-Y, Al-Dulayymi J, Baird MS, Williams PA (2002) Salicylate 5-hydroxylase from Ralstonia sp. strain U2: a monooxygenase with close relationships to and shared electron transport proteins with naphthalene dioxygenase. J Bacteriol 184(6):1547–1555PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Odd Gunnar Brakstad
    • 1
    Email author
  • Synnøve Lofthus
    • 2
  • Deni Ribicic
    • 3
  • Roman Netzer
    • 1
  1. 1.SINTEF Ocean, Marine Environmental TechnologyTrondheimNorway
  2. 2.Department of BiotechnologyNTNUTrondheimNorway
  3. 3.Department of Cancer Research and Molecular MedicineNTNUTrondheimNorway

Personalised recommendations