Advertisement

Nitrification at Low Temperature for Purification of Used Water

  • M. J. DempseyEmail author
Chapter

Abstract

Prokaryotes that can oxidize ammonia and/or nitrite are known as nitrifiers and are common in terrestrial, freshwater and marine environments. Where the temperature is commonly in the range 020 °C, psychrophilic strains or species can be isolated or identified using molecular techniques. It is therefore no surprise to also find psychrophilic nitrifiers in engineered systems used, for example, to remove ammonia from raw, used or wastewater or from contaminated air. In temperate regions, we have been using psychrophilic nitrifiers without most people realizing, and this chapter attempts to put their importance into context by comparing and contrasting their presence in natural and engineered systems. It concludes by describing a biofilm-based process technology, the expanded bed biofilm reactor, which the author has improved with several inventions that make this technology cost-effective for wider adoption.

References

  1. Akhidime ID (2009) Aspects of expanded bed nitrification including treatment of oil refinery wastewaters. PhD, Manchester Metropolitan University, Manchester. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509884
  2. Akhidime ID, Dempsey MJ (2009) Influence of biofilm thickness on ammonia oxidation rate of bioparticles from expanded bed process for tertiary nitrification. Paper presented at the 2nd IWA Specialized Conference on Nutrient Management in Wastewater Treatment Processes, Krakow, Poland, 2009Google Scholar
  3. Alawi M, Lipski A, Sanders T, Eva Maria P, Spieck E (2007) Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the siberian arctic. ISME J 1(3):256–264. doi: 10.1038/ismej.2007.34 CrossRefPubMedGoogle Scholar
  4. Alawi M, Off S, Kaya M, Spieck E (2009) Temperature influences the population structure of nitrite-oxidizing bacteria in activated sludge. Environ Microbiol Rep 1(3):184–190. doi: 10.1111/j.1758-2229.2009.00029.x CrossRefPubMedGoogle Scholar
  5. Bodık I, Kratochvıl K, Gašpariková E, Hutňan M (2003) Nitrogen removal in an anaerobic baffled filter reactor with aerobic post-treatment. Bioresour Technol 86(1):79–84. doi: 10.1016/S0960-8524(02)00109-8 CrossRefPubMedGoogle Scholar
  6. Boller M, Eugster J, Weber A, Gujer W (1987) Nitrification in nachgeschalteten rotierenden Tauchkörpern. Bericht über 2 Jahre Pilotuntersuchungen. EAWAG report no. 28–601, Dübendorf, SwitzerlandGoogle Scholar
  7. BS-EN-12255-7 (2002) Wastewater treatment plants. Biological fixed-film reactors. British Standards Institution, LondonGoogle Scholar
  8. Chao Y, Mao Y, Yu K, Zhang T (2016) Novel nitrifiers and comammox in a full-scale hybrid biofilm and activated sludge reactor revealed by metagenomic approach. Appl Microbiol Biotechnol 100(18):8225–8237. doi: 10.1007/s00253-016-7655-9 CrossRefPubMedGoogle Scholar
  9. Clark K, Chantigny MH, Angers DA, Rochette P, Parent L-E (2009) Nitrogen transformations in cold and frozen agricultural soils following organic amendments. Soil Biol Biochem 41(2):348–356. doi: 10.1016/j.soilbio.2008.11.009 CrossRefGoogle Scholar
  10. Costa E, Perez J, Kreft JU (2006) Why is metabolic labour divided in nitrification? Trends Microbiol 14(5):213–219. doi: 10.1016/j.tim.2006.03.006 CrossRefPubMedGoogle Scholar
  11. Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Wagner M (2015) Complete nitrification by nitrospira bacteria. Nature 528(7583):504–509. http://www.nature.com/nature/journal/v528/n7583/abs/nature16461.html#supplementary-information. doi: 10.1038/nature16461
  12. Dempsey MJ (2001) Nitrification process. EU Patent EP 1,129,037Google Scholar
  13. Dempsey MJ (2004) EU Patent No. EP 1,444,167Google Scholar
  14. Dempsey MJ (2011) Improvements in and relating to fluid bed expansion and fluidisation. US Patent US 7,309,433Google Scholar
  15. Dempsey MJ, Porto I, Mustafa M, Rowan AK, Brown A, Head IM (2006) The expanded bed biofilter: combined nitrification, solids destruction, and removal of bacteria. Water Sci Technol 54(8):37–46CrossRefPubMedGoogle Scholar
  16. European Council (1991) Urban wastewater treatment directive. Council Directive 91/271/EEC, L135, May 30, 1991Google Scholar
  17. European Council (2000) Directive 2000/60/ec of the European parliament and of the council establishing a framework for the community action in the field of water policy, December 22, 2000Google Scholar
  18. Gerrity S, Clifford E, Kennelly C, Collins G (2016) Ammonia oxidizing bacteria and archaea in horizontal flow biofilm reactors treating ammonia-contaminated air at 10°C. J Ind Microbiol Biotechnol 43(5):651–661. doi: 10.1007/s10295-016-1740-z CrossRefPubMedGoogle Scholar
  19. Jusselme M-D, Saccone P, Zinger L, Faure M, Le Roux X, Guillaumaud N, Poly F (2016) Variations in snow depth modify n-related soil microbial abundances and functioning during winter in subalpine grassland. Soil Biol Biochem 92:27–37. doi: 10.1016/j.soilbio.2015.09.013 CrossRefGoogle Scholar
  20. Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437(7058):543–546. http://www.nature.com/nature/journal/v437/n7058/suppinfo/nature03911_S1.html CrossRefPubMedGoogle Scholar
  21. Lau FTK (2011) Application of hybrid reactor to maximize treatment capacity and nitrification with short sludge-age operation. http://www.dsd.gov.hk/EN/Files/Technical_Manual/RnD_reports/RD2038.pdf
  22. Maixner F, Noguera DR, Anneser B, Stoecker K, Wegl G, Wagner M, Daims H (2006) Nitrite concentration influences the population structure of nitrospira-like bacteria. Environ Microbiol 8(8):1487–1495. doi: 10.1111/j.1462-2920.2006.01033.x CrossRefPubMedGoogle Scholar
  23. McKeown RM, Scully C, Enright AM, Chinalia FA, Lee C, Mahony T, O’Flaherty V (2009) Psychrophilic methanogenic community development during long-term cultivation of anaerobic granular biofilms. ISME J 3(11):1231–1242. doi: 10.1038/ismej.2009.67 CrossRefPubMedGoogle Scholar
  24. Metcalf & Eddy Inc, Tchobanoglous G, Stensel HD, Tsuchihashi R, Burton F (2014) Wastewater engineering: treatment and resource recovery, 5th edn. WCB/McGraw-Hill, New York, NYGoogle Scholar
  25. Murdoch University Environmental Technology Centre (2000) Environmentally sound technologies in wastewater treatment for the implementation of the unep global programme of action (gpa) “guidance on municipal wastewater”. http://www.unep.or.jp/ietc/publications/freshwater/sb_summary/index.asp
  26. Niu J, Kasuga I, Kurisu F, Furumai H, Shigeeda T, Takahashi K (2016) Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process. Appl Microbiol Biotechnol 100(2):729–742. doi: 10.1007/s00253-015-6969-3 CrossRefPubMedGoogle Scholar
  27. Park HD, Wells GF, Bae H, Criddle CS, Francis CA (2006) Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl Microbiol Biotechnol 72(8):5643–5647. doi: 10.1128/aem.00402-06 Google Scholar
  28. Prosser JI (ed) (1986) Nitrification, vol 20. Published for the Society for General Microbiology by IRL, OxfordGoogle Scholar
  29. Sauder LA, Peterse F, Schouten S, Neufeld JD (2012) Low-ammonia niche of ammonia-oxidizing archaea in rotating biological contactors of a municipal wastewater treatment plant. Environ Microbiol 14(9):2589–2600. doi: 10.1111/j.1462-2920.2012.02786.x CrossRefPubMedPubMedCentralGoogle Scholar
  30. Telling J, Anesio AM, Tranter M, Fountain AG, Nylen T, Hawkings J, Wadham JL (2014) Spring thaw ionic pulses boost nutrient availability and microbial growth in entombed antarctic dry valley cryoconite holes. Front Microbiol 5:694. doi: 10.3389/fmicb.2014.00694 CrossRefPubMedPubMedCentralGoogle Scholar
  31. van Kessel MAHJ, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJM, Kartal B, Lücker S (2015) Complete nitrification by a single microorganism. Nature 528(7583):555–559. doi: 10.1038/nature16459 PubMedPubMedCentralGoogle Scholar
  32. Wett B, Jimenez JA, Takacs I, Murthy S, Bratby JR, Holm NC, Ronner-Holm SGE (2011) Models for nitrification process design: one or two aob populations? Water Sci Technol 64(3):568–578. doi: 10.2166/wst.2011.499 CrossRefPubMedGoogle Scholar
  33. Wu J, He CD, van Loosdrecht MCM, Perez J (2016) Selection of ammonium oxidizing bacteria, (aob) over nitrite oxidizing bacteria (nob) based on conversion rates. Chem Eng J 304:953–961. doi: 10.1016/j.cej.2016.07.019 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Science and Engineering, Manchester Metropolitan UniversityManchesterUK
  2. 2.Advanced Bioprocess Development Ltd.ManchesterUK

Personalised recommendations