Perspectives of Low-Temperature Biomass Production of Polar Microalgae and Biotechnology Expansion into High Latitudes

  • Jana Kvíderová
  • Satya P. Shukla
  • Benjamin Pushparaj
  • Josef ElsterEmail author


The adaptation mechanisms of polar microalgae (including cyanobacteria and eukaryotic microalgae) evolved to withstand the harsh polar environment characterized by low temperature, freeze-thaw cycles, desiccation, salinity, and high and variable photosynthetically active and ultraviolet radiation. Hence, polar microalgae developed ecological, physiological, and molecular defensive and adaptive strategies, which include the synthesis of a tremendous diversity of compounds originating from different metabolic pathways which protect them against the abovementioned stresses. Production of different biological compounds and various biotechnological applications, for instance, water treatment technology in low-temperature environments and many others, are the perspectives for humans, which widely explore the polar regions. In this review, the nonmarine environmental conditions in polar environments and microalgal adaptations are summarized with respect to possible biotechnological applications. The review also provides a survey of the possible compounds to be exploited from polar microalgae. Possible constructions of photobioreactors for mass cultivation of microalgae are proposed for operations in polar regions.



The research was supported by project LM2015078—CzechPolar2—Czech Polar Research Infrastructure (MŠMT) and the long-term research development project no. RVO 67985939 (IB). We would like to thank Assoc. Prof. R. K. Edwards for language correction.


  1. Addison PA, Bliss LC (1980) Summer climate, microclimate, and energy budget of a polar semidesert on King Christian Island, NWT, Canada. Arct Alp Res 12(2):161–170CrossRefGoogle Scholar
  2. Aleksandrova VD (1980) The Arctic and Antarctic: their division into geobotanical areas. Cambridge University Press, Cambridge, p 247Google Scholar
  3. Astorg P (1997) Food carotenoids and cancer prevention: an overview of current research. Trends Food Sci Technol 8(12):406–413CrossRefGoogle Scholar
  4. Ben-Amotz A, Avron M (1990) The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol 8(5):121–126CrossRefGoogle Scholar
  5. Borowitzka MA (2005) Culturing microalgae in outdoor ponds. In: Andersen RA (ed) Algal culturing techniques. Elsevier, Amsterdam, pp 205–218Google Scholar
  6. Broady PA (1996) Biodiversity, distribution and dispersal of Antarctic algae. Biodivers Conserv 5:1307–1335CrossRefGoogle Scholar
  7. Bull AT, Goodfellow M, Slater JH (1992) Biodiversity as a source of innovation in biotechnology. Annu Rev Microbiol 46(1):219–246CrossRefPubMedGoogle Scholar
  8. Callaghan TV, Björn LO, Chernov Y, Chapin T, Christensen TR, Huntley B, Ims RA, Johansson M, Jolly D, Jonasson S, Matveyeva N, Panikov N, Oechel W, Shaver G, Elster J, Jonsdottir IS, Laine K, Taulavuori K, Taulavuori E, Zöckler C (2004) Responses to projected changes in climate and UV-B at the species level. Ambio 33(7):418–435CrossRefPubMedGoogle Scholar
  9. Chaturvedi A, Kaul SMK (eds) (1999) Scientific report of fifteenth Indian expedition to Antarctica. Technical Publication no 13. Department of Ocean Development, New DelhiGoogle Scholar
  10. Chevalier P, Proulx D, Lessard P, Vincent W, De la Noüe J (2000) Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J Appl Physiol 12(2):105–112Google Scholar
  11. Cockell CS, Stokes MD (2006) Hypolithic colonization of opaque rocks in the Arctic and Antarctic polar desert. Arct Antarct Alp Res 38(3):335–342CrossRefGoogle Scholar
  12. Courtin GM, Labine CL (1977) Microclimatological studies of the Truelove Lowland. In: Bliss LC (ed) Truelove Lowland, Devon Island, Canada: a high arctic ecosystem. University of Alberta Press, Edmonton, pp 73–106Google Scholar
  13. Del Campo JA, García-González M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74(6):1163–1174CrossRefPubMedGoogle Scholar
  14. Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309CrossRefPubMedGoogle Scholar
  15. Dhargalkar V, Verlecar X (2009) Southern Ocean seaweeds: a resource for exploration in food and drugs. Aquaculture 287(3):229–242CrossRefGoogle Scholar
  16. Elster J (2002) Ecological classification of terrestrial algal communities in polar environments. In: Beyer L, Bötler M (eds) Geoecology of Antarctic ice-free coastal landscapes. Springer, Berlin, pp 303–326CrossRefGoogle Scholar
  17. Elster J, Benson EE (2004) Life in the polar terrestrial environment with a focus on algae and cyanobacteria. In: Fuller BJ, Lane N, Benson EE (eds) Life in the frozen state. CRC Press, Boca Raton, FL, pp 111–150CrossRefGoogle Scholar
  18. Elster J, Komárek O (2003) Ecology of periphyton in a meltwater stream ecosystem in the maritime Antarctica. Antarct Sci 15(2):189–201CrossRefGoogle Scholar
  19. Elster J, Svoboda J, Kanda H (2001) Controlled environmental platform used in temperature manipulation study of a stream periphyton in the Ny-Ålesund, Svalbard. In: Elster J, Seckbach J, Vincent WF, Lhotský O (eds) Algae and extreme environments, Nova Hedvigia Beiheft, vol 123. Cramer, Stuttgart, pp 63–75Google Scholar
  20. Elster J, Kvíderová J, Hájek T, Láska K, Šimek M (2012) Impact of warming on Nostoc colonies (Cyanobacteria) in a wet hummock meadow, Spitzbergen. Pol Polar Res 33(4):395–420Google Scholar
  21. Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53(10):830–841CrossRefPubMedGoogle Scholar
  22. Friedmann EI, McKay CP, Nienow JA (1987) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: satellite-transmitted continuous nanoclimate data, 1984 to 1986. Polar Biol 7:273–287CrossRefPubMedGoogle Scholar
  23. Garcia-Pichel F, Castenholz RW (1993) Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl Environ Microbiol 59(1):163–169PubMedPubMedCentralGoogle Scholar
  24. Glazer AN, Nikaido H (2007) Microbial biotechnology: fundamentals of applied microbiology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. Henry GHR, Svoboda J, Freedman B (1994) Standing crop and net production of non-grazed sedge meadow of a polar desert oasis. In: Svoboda J, Freedman B (eds) Ecology of a pola oasis. Alexandra Fiord, Ellesmere Island, Canada. Captus University Publications, Toronto, pp 85–95Google Scholar
  26. Hodson AJ, Gurnell AM, Washington R, Tranter M, Clark MJ, Hagen JO (1998) Meteorological and runoff time-series characteristics in a small, high-Arctic glaciated basin, Svalbard. Hydrol Process 12(3):509–526CrossRefGoogle Scholar
  27. Holdgate MW (1970) Antarctic ecology. Academic Press, LondonGoogle Scholar
  28. Hrouzek P, Tomek P, Lukešová A, Urban J, Voloshko L, Pushparaj B, Ventura S, Lukavský J, Štys D, Kopecký J (2012) Cytotoxicity and secondary metabolites production in terrestrial Nostoc strains, originating from different climatic/geographic regions and habitats: is their cytotoxicity environmentally dependent? Environ Toxicol 26(4):345–358CrossRefGoogle Scholar
  29. Hu HH, Li HY, Xu XD (2008) Alternative cold response modes in Chlorella (Chlorophyta, Trebouxiophyceae) from Antarctica. Phycologia 47(1):28–34CrossRefGoogle Scholar
  30. Janech MG, Krell A, Mock T, Kang J-S, Raymond JA (2006) Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J Phycol 42(2):410–416CrossRefGoogle Scholar
  31. Kappen L, Valladares F (2007) Opportunistic growth and desiccation tolerance: the ecological success of poikilohydrous autotrophs. In: Pugnaire F, Valladares F (eds) Functional plant ecology. Taylor and Francis, New York, NY, pp 7–66Google Scholar
  32. Komárek J, Elster J (2008) Ecological background of cyanobacterial assemblages of the northern part of James Ross Island, Antarctica. Pol Polar Res 29:17–32Google Scholar
  33. Komárek J, Kováčik L, Elster J, Komárek O (2012) Cyanobacterial diversity of Petuniabukta, Billefjorden, central Spitzbergen. Pol Polar Res 33(4):347–368Google Scholar
  34. Kopalová K, Nedbalová L, Nývlt D, Elster J, Van de Vijver B (2013) Diversity, ecology and biogeography of the freshwater diatom communities from Ulu Peninsula (James Ross Island, NE Antarctic Peninsula). Polar Biol 36(7):933–948CrossRefGoogle Scholar
  35. Krezel A, Pecherzewski K (1981) Preliminary data on total radiation in the region of Arctowski Station (King George Island, South Shetland Islands). Pol Polar Res 2:47–54Google Scholar
  36. Kvíderová J, Elster J, Šimek M (2011) In situ response of Nostoc commune s.l. colonies to desiccation in Central Svalbard, Norwegian High Arctic. Fottea 11(1):87–97CrossRefGoogle Scholar
  37. Labine CL (1994) Meteorology and climatology of the Alexandra Fiord lowland. In: Svoboda J, Freedman B (eds) Ecology of a pola oasis. Alexandra Fiord, Ellesmere Island, Canada. Captus University Publications, Toronto, pp 23–39Google Scholar
  38. Láska K, Witoszová D, Prošek P (2012) Weather pattern of the coastal zone of Petuniabukta, central Spitzbergen in the period 2008–2010. Pol Polar Res 33(4):297–318Google Scholar
  39. Lukavský J (2012) Trachydiscus minutus: a new algal EPA producer. In: Krueger D, Meyer H (eds) Algae: ecology, economy uses and environmental impact. Nova Science, New York, NY, pp 77–104Google Scholar
  40. Lv J-M, Cheng L-H, Xu X-H, Zhang L, Chen H-L (2010) Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour Technol 101(17):6797–6804CrossRefPubMedGoogle Scholar
  41. Malapascua JR, Jerez CG, Sergejevová M, Figueroa FL, Masojídek J (2014) Photosynthesis monitoring to optimize growth of microalgal mass cultures: application of chlorophyll fluorescence techniques. Aquat Biol 22:123–140CrossRefGoogle Scholar
  42. McKay CP, Nienow JA, Meyer MA, Friedmann EI (1993) Continuous nanoclimate data (1985–1988) from the Ross Desert (McMurdo Dry Valleys) cryptoendolithic microbial ecosystem. In: Bromwich DH, Stearns CR (eds) Antarctic meteorology and climatology: studies based on automatic weather stations, Antarctic research series, vol 61. American Geophysical Union, Washington, DC, pp 201–207CrossRefGoogle Scholar
  43. McKay CP, Nienow JA, Meyer MA, Friedmann EI (1998) Continuous nanoclimate data (1985–1988) from the Ross Desert (McMundo Dry Valleys) cryptoendolithic microbial ecosystem. Antarct Res Ser 61:201–207CrossRefGoogle Scholar
  44. Methé BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupu R, Nelson WC, Dodson RJ (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci U S A 102(31):10913–10918CrossRefPubMedPubMedCentralGoogle Scholar
  45. Müller T, Bleiss W, Martin C-D, Rogaschewski S, Fuhr G (1998) Snow algae from northwest Svalbard: their identification, distribution, pigment and nutrient content. Polar Biol 20:14–32CrossRefGoogle Scholar
  46. Nichols DS, Sanderson K, Buia A, Van De Kamp J, Holloway P, Bowman JP, Smith M, Mancuso Nichols C, Nichols P, McMeekin TA (2002) Bioprospecting and biotechnology in Antarctica. In: Jabour-Green J, Haward M (eds) The Antarctic: past, present and future. Antarctic CRC Research Report no 28, Hobart, pp 85–105Google Scholar
  47. Pichrtová M, Remias D, Lewis LA, Holzinger A (2013) Changes in phenolic compounds and cellular ultrastructure of Arctic and Antarctic strains of Zygnema (Zygnematophyceae, Streptophyta) after exposure to experimentally enhanced UV to PAR ratio. Microb Ecol 65(1):68–83CrossRefPubMedGoogle Scholar
  48. Piette F, D’Amico S, Mazzucchelli G, Danchin A, Leprince P, Feller G (2011) Life in the cold: a proteomic study of cold-repressed proteins in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Appl Environ Microbiol 77(11):3881–3883CrossRefPubMedPubMedCentralGoogle Scholar
  49. Pushparaj B, Buccioni A, Paperi R, Piccardi R, Ena A, Carlozzi P, Sili C (2008) Fatty acid composition of Antarctic cyanobacteria. Phycologia 47:430–434CrossRefGoogle Scholar
  50. Quesada A, Vincent WF (1997) Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation. Eur J Phycol 32:335–342CrossRefGoogle Scholar
  51. Řezanka T, Nedbalová L, Sigler K (2008) Unusual medium chain-chain polyunsaturated fatty acids from snow alga Chloromonas brevispina. Microbiol Res 163(4):373–379CrossRefPubMedGoogle Scholar
  52. Řezanka T, Nedbalová L, Elster J, Cajthaml T, Sigler K (2009) Very-long-chain iso and anteiso branched fatty acids in N-acylphosphatidylethanolamines from a natural cyanobacterial mat of Calothrix sp. Phytochemistry 70(5):655–663CrossRefPubMedGoogle Scholar
  53. Richmond A (2004) Handbook of microalgal culture: biotechnology and applied phycology. Wiley-Blackwell, OxfordGoogle Scholar
  54. Roos JC, Vincent WF (1998) Temperature dependence of UV radiation effects on Antarctic cyanobacteria. J Phycol 34:118–125CrossRefGoogle Scholar
  55. Šabacká M, Elster J (2006) Response of cyanobacteria and algae from Antarctic wetland habitats to freezing and desiccation stress. Polar Biol 30(1):31–37CrossRefGoogle Scholar
  56. Shukla SP, Kvíderová J, Elster J (2011) Nutrient requirements of polar Chlorella-like species. Czech Polar Rep 1:1–10CrossRefGoogle Scholar
  57. Shukla SP, Kvíderová J, Tříska J, Elster J (2013) Chlorella mirabilis as a potential species for biomass production in low-temperature environment. Front Microbiol 4. doi: 10.3389/fmicb.2013.00097
  58. Singh SC, Sinha RP, Häder D-P (2002) Role of lipids and fatty acids synthesis in stress tolerance in cyanobacteria. Acta Protozool 41:297–308Google Scholar
  59. Singh S, Kate BN, Banerjee U (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25(3):73–95CrossRefPubMedGoogle Scholar
  60. Skulberg OM (1996) Terrestrial and limnic algae and cyanobacteria. In: Elvebakk A, Prestrud P (eds) A catalogue of Svalbard plants, fungi, algae and cyanobacteria. Norsk Polarinstitutt Skrifter, Tromsø, pp 383–395Google Scholar
  61. Strunecký O, Elster J, Komarek J (2010) Phylogenetic relationships between geographically separate Phormidium cyanobacteria: is there a link between north and south polar regions? Polar Biol 33(10):1419–1428CrossRefGoogle Scholar
  62. Strunecký O, Komárek J, Elster J (2012) Biogeography of Phormidium autumnale (Oscillatoriales, Cyanobacteria) in western and central Spitsbergen. Pol Polar Res 33(4):369–382Google Scholar
  63. Szeicz G (1974) Solar radiation for plant growth. J Appl Ecol 11(2):617–636CrossRefGoogle Scholar
  64. Tanabe Y, Ohtani S, Kasamatsu N, Fukuchi M, Kudoh S (2010) Photophysiological responses of phytobenthic communities to the strong light and UV in Antarctic shallow lakes. Polar Biol 33(1):85–100CrossRefGoogle Scholar
  65. Tang EPY, Tremblay R, Vincent WF (1997) Cyanobaterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature? J Phycol 33:171–181CrossRefGoogle Scholar
  66. Tenhunen JD, Lange OL, Hahn S, Siegwolf R, Oberbauer SF (1992) The ecosystem role of poikilohydric tundra plants. In: Chapin FSI, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystem in a changing climate. An ecological perspective. Academic Press, San Diego, CA, pp 213–237CrossRefGoogle Scholar
  67. Thimijan RW, Heins RD (1983) Photometric, radiometric and quantum light units of measure: a review of procedures for interconversion. Hortic Sci 18(6):818–822Google Scholar
  68. van den Vijver B, Sterken M, Vyverman W, Mataloni G, Nedbalová L, Kopalová K, Elster J, Verleyen E, Sabbe K (2010) Four new non-marine diatom taxa from the subantarctic and arctic regions. Diatom Res 25:431–443CrossRefGoogle Scholar
  69. Vargas M, Rodriguez H, Moreno J, Olivares H, Campo JD, Rivas J, Guerrero M (2002) Biochemical composition and fatty acid content of filamentous nitrogen-fixing cyanobacteria. J Phycol 34(5):812–817CrossRefGoogle Scholar
  70. Vincent WF, Laybourn-Parry J (2008) Polar lakes and rivers: limnology of Arctic and Antarctic ecosystems. Oxford University Press, OxfordCrossRefGoogle Scholar
  71. Vincent WF, Quesada A (1994) Ultraviolet radiation effects on cyanobacteria: implications for Antarctic microbial ecosystems. In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects, Antarctic research series, vol 62. AGU, Washington, DC, pp 111–124CrossRefGoogle Scholar
  72. Vincent WF, Rae R, Laurion I, Howard-Williams C, Priscu JC (1998) Transparency of Antarctic ice-covered lakes to solar UV radiation. Limnol Oceanogr 43(4):618–624CrossRefGoogle Scholar
  73. Vonshak A (1997) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor & Francis, LondonGoogle Scholar
  74. Wiencke C, Clayton MN, Gómez I, Iken K, Lüder UH, Amsler CD, Karsten U, Hanelt D, Bischof K, Dunton K (2007) Life strategy, ecophysiology and ecology of seaweeds in polar waters. In: Amils R, Ellis-Evans C, Hinghofer-Szalkay H (eds) Life in extreme environments. Springer, Dordrecht, pp 213–244CrossRefGoogle Scholar
  75. Wulff A, Zacher K, Hanelt D, Al-Handal A, Wiencke C (2008) UV radiation—a thread to Antarctic benthic marine diatoms? Antarct Sci 20(1):13–20CrossRefGoogle Scholar
  76. Zakhia F, Jungblut A-D, Taton A, Vincent WF, Wilmotte A (2008) Cyanobacteria in cold ecosystems. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 121–135CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jana Kvíderová
    • 1
  • Satya P. Shukla
    • 2
  • Benjamin Pushparaj
    • 3
  • Josef Elster
    • 1
    • 4
    Email author
  1. 1.Centre for Polar Ecology, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  2. 2.Aquatic Environment Management DivisionCentral Institute of Fisheries Education, 11MumbaiIndia
  3. 3.ISE-CNR Istituto per lo Studio degli EcosistemiSesto FiorentinoItaly
  4. 4.Institute of Botany, Academy of Sciences of the Czech RepublicTřeboňCzech Republic

Personalised recommendations