Advertisement

Cold-Adapted Basidiomycetous Yeasts as a Source of Biochemicals

  • Giorgia Tasselli
  • Sara Filippucci
  • Ciro Sannino
  • Benedetta Turchetti
  • Pietro BuzziniEmail author
Chapter

Abstract

Yeasts play a relevant role as starter cultures in traditional foods and beverages, as well as in innumerable biotechnological applications for obtaining high-value bulk and fine biochemicals. Despite a considerable number of studies on yeasts have been performed by using almost exclusively the species Saccharomyces cerevisiae (otherwise labeled as baker’s yeast), the number of yeast species described so far accounts for more than 1600, belonging to over 130 ascomycetous and basidiomycetous genera. This huge yeast diversity includes many non-Saccharomyces species possessing useful, and sometimes uncommon, metabolic features potentially interesting for both food and nonfood industries. Like other organisms, cold-adapted yeasts include species able to survive and grow in cold environments. They are usually labeled as psychrophiles or psychrotolerants on the basis of their cardinal growth temperatures. Among them, yeasts belonging to the phylum Basidiomycota apparently exhibit a superior adaptation to cold. This apparent superiority, which could be the result of some metabolic strategies implemented for adapting life to different thermal conditions in order to overcome the adverse effect of cold, can be considered worthwhile for implementing their biotechnological application at low temperatures. Accordingly, cold-adapted basidiomycetous yeasts have attracted considerable attention for their biotechnological potential, because they have developed the ability to synthesize cold-active enzymes, as well as other important biochemicals, namely, cryoprotectant compounds, polymers, lipids, and other miscellaneous compounds.

References

  1. Alchihab M, Destain J, Aguedo M, Majad L, Ghalfi H, Wathelet JP, Thonart P (2009) Production of γ-decalactone by a psychrophilic and a mesophilic strain of the yeast Rhodotorula aurantiaca. Appl Biochem Biotechnol 158:41–50PubMedCrossRefGoogle Scholar
  2. Alias N, Ahmad Mazian M, Salleh AB, Basri M, Rahman RN (2014) Molecular cloning and optimization for high level expression of cold-adapted serine protease from Antarctic yeast Glaciozyma antarctica PI12. Enzyme Res 2014:1–20CrossRefGoogle Scholar
  3. Alimardani-Theuil P, Gainvors-Claise A, Duchiron F (2011) Yeasts: an attractive source of pectinases – from gene expression to potential applications: a review. Proc Biochem 46:1525–1537CrossRefGoogle Scholar
  4. Amaretti A, Raimondi S, Sala M, Roncaglia L, De Lucia M, Leonardi A, Rossi M (2010) Single cell oils of the cold- adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785. Microb Cell Fact 9:73–78PubMedPubMedCentralGoogle Scholar
  5. Amoresano A, Andolfo A, Corsaro MM, Zocchi I, Petrescu I, Gerday C, Marino G (2000) Structural characterization of a xylanase from psychrophilic yeast by mass spectrometry. Glycobiology 10:451–458PubMedCrossRefGoogle Scholar
  6. Avis TJ, Bélanger RR (2001) Specificity and mode of action of the antifungal fattyacid cis-9-heptadecenoic acid produced by Pseudozyma flocculosa. Appl Environ Microbiol 67:956–960PubMedPubMedCentralCrossRefGoogle Scholar
  7. Avis TJ, Cheng YL, Zhao YY, Bolduc S, Neveu B, Anguenot R, Labbé C, Belzile F, Bélanger RR (2005) The potential of Pseudozyma yeast like epiphytes for the production of heterologous recombinant proteins. Appl Microbiol Biotechnol 69:304–311PubMedCrossRefGoogle Scholar
  8. Barahona S, Yuivar Y, Socias G, Alcaíno J, Cifuentes V, Baeza M (2016) Identification and characterization of yeasts isolated from sedimentary rocks of Union Glacier at the Antarctica. Extremophiles 20:479–491PubMedCrossRefGoogle Scholar
  9. Behr A, Pérez Gomes J (2011) The cross-metathesis of methyl oleate with cis-2-butene-1,4-diyl diacetate and the influence of protecting groups. Beilstein Org Chem 7:1–8CrossRefGoogle Scholar
  10. Benesova E, Markova M, Kralova B (2005) a-Glucosidase and b-glucosidase from psychrotrophic strain Arthrobacter sp. C2–2. Czech J Food Sci 23:116–120Google Scholar
  11. Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387PubMedCrossRefGoogle Scholar
  12. Białkowska AM, Turkiewicz M (2014) Miscellaneous cold-active yeast enzymes of industrial importance. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, Heidelberg, pp 377–396CrossRefGoogle Scholar
  13. Białkowska AM, Cieśliński H, Nowakowska KM, Kur J, Turkiewicz M (2009) A new β-galactosidase with a low temperature optimum isolated from the Antarctic Arthrobacter sp. 20B: gene cloning, purification and characterization. Arch Microbiol 191:825–835PubMedCrossRefGoogle Scholar
  14. Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer JH (2011) Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed 50:3854–3871CrossRefGoogle Scholar
  15. Birgisson HK, Delgado O, Arroyo LG, Hatti-Kaul R, Mattiasson B (2003) Cold-adapted yeasts as producers of cold-active polygalacturonases. Extremophiles 7:185–193PubMedGoogle Scholar
  16. Blank K, Morfill J, Gumpp H, Gaub HE (2006) Functional expression of Candida antarctica lipase B in Escherichia coli. J Biotechnol 125:474–483PubMedCrossRefGoogle Scholar
  17. Branda E, Turchetti B, Diolaiuti G, Pecci M, Smiraglia C, Buzzini P (2010) Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone glacier, Apennines, Italy). FEMS Microbiol Ecol 72:354–369PubMedCrossRefGoogle Scholar
  18. Brandão LR, Libkind D, Vaz AB, Espírito Santo LC, Moliné M, de García V, van Broock M, Rosa CA (2011) Yeasts from an oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes. FEMS Microbiol Ecol 76:1–13PubMedCrossRefGoogle Scholar
  19. Brizzio S, Turchetti B, de Garcìa V, Libkind D, Buzzini P, van Broock M (2007) Extracellular enzymatic activities (EEA) of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Can J Microbiol 53:519–525PubMedCrossRefGoogle Scholar
  20. Butinar L, Spencer-Martins I, Gunde-Cimerman N (2007) Yeasts in high Arctic glaciers: the discovery of a new habitat for eukaryotic microorganisms. A van Leeuwenhoek 91:277–289CrossRefGoogle Scholar
  21. Buzzini P, Margesin R (2014a) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, HeidelbergCrossRefGoogle Scholar
  22. Buzzini P, Margesin R (2014b) Cold-adapted yeasts: a lesson from the cold and a challenge for the XXI century. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, Heidelberg, pp 3–22CrossRefGoogle Scholar
  23. Buzzini P, Vaughan-Martini A (2006) Yeast biodiversity and biotechnology. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 533–559CrossRefGoogle Scholar
  24. Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241PubMedCrossRefGoogle Scholar
  25. Buzzini P, Di Mauro S, Turchetti B (2017) Yeasts as starter cultures. In: Speranza B, Bevilacqua B, Corbo MR, Sinigaglia M (eds) Starter cultures in food production. Wiley, New York, pp 16–49CrossRefGoogle Scholar
  26. Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7:262–266PubMedCrossRefGoogle Scholar
  27. Carrasco M, Rozas JM, Barahona S, Alcaíno J, Cifuentes V, Baeza M (2012) Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiol 12:251PubMedPubMedCentralCrossRefGoogle Scholar
  28. Carrasco M, Villarreal P, Barahona S, Alcaíno J, Cifuentes V, Baeza M (2016) Screening and characterization of amylase and cellulase activities in psychrotolerant yeasts. BMC Microbiol 19:16–21Google Scholar
  29. Chaud LC, Lario LD, Bonugli-Santos RC, Sette LD, Pessoa Junior A, Felipe MD (2016) Improvement in extracellular protease production by the marine Antarctic yeast Rhodotorula mucilaginosa L7. Nat Biotechnol 33:807–814Google Scholar
  30. Chen B, Hu J, Miller EM, Xie W, Cai M, Gross RA (2008) Candida antarctica lipase B chemically immobilized on epoxy-activated micro- and nanobeads: catalysts for polyester synthesis. Biomacromolecules 9:463–471PubMedCrossRefGoogle Scholar
  31. Connell LB, Redman R, Craig S, Scorzetti G, Iszaard M, Rodriguez R (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb Ecol 56:448–459PubMedCrossRefGoogle Scholar
  32. De Mot R, Verachtert H (1987) Purification and characterization of extracellular a-amylase and glucoamylase from the yeast Candida antarctica CBS 6678. Eur J Biochem 164:643–654PubMedCrossRefGoogle Scholar
  33. Deegenaars ML, Watson K (1997) Stress proteins and stress tolerance in an Antarctic, psychrophilic yeast, Candida psychrophila. FEMS Microbiol Lett 151:191–196PubMedCrossRefGoogle Scholar
  34. Deegenaars ML, Watson K (1998) Heat-shock response in psychrophilic and psychrotrophic yeast from Antarctica. Extremophiles 2:41–49PubMedCrossRefGoogle Scholar
  35. Dimitrova S, Pavlova K, Lukanov L, Zagorchev P (2010) Synthesis of coenzyme Q10 and beta-carotene by yeasts isolated from Antarctic soil and lichen in response to ultraviolet and visible radiations. Appl Biochem Biotechnol 162:795–804PubMedCrossRefGoogle Scholar
  36. Dimitrova S, Pavlova K, Lukanov L, Korotkova E, Petrova E, Zagorchev P, Kuncheva M (2013) Production of metabolites with antioxidant and emulsifying properties by Antarctic strain Sporobolomyces salmonicolor AL1. Appl Biochem Biotechnol 169:301–311PubMedCrossRefGoogle Scholar
  37. Dominguez de Maria P, Carboni-Oerlemans C, Tuin B, Bergeman G, Meer A, Gemert R (2005) Biotechnological applications of Candida antarctica lipase A: state-of-the-art. J Mol Catal B 37:36–46CrossRefGoogle Scholar
  38. Donot F, Fontana A, Baccou J, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87:951–962CrossRefGoogle Scholar
  39. Duarte AW, Dayo-Owoyemi I, Nobre FS, Pagnocca FC, Chaud LC, Pessoa A, Felipe MG, Sette LD (2013) Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 17:1023–1035PubMedCrossRefGoogle Scholar
  40. Emond S, Montanier C, Nicaud JM, Marty A, Monsan P, Andre I, Remaud-Simeon M (2010) New efficient recombinant expression system to engineer Candida antarctica lipase B. Appl Environ Microbiol 76:2684–2687PubMedPubMedCentralCrossRefGoogle Scholar
  41. Ericsson DJ, Kasrayan A, Johansson P, Berqfors T, Sandstrom AG, Bäckvall JE, Mowbray SL (2008) X-ray structure of Candida antarctica lipase B shows a novel lid structure and a likely mode of interfacial activation. J Mol Biol 376:109–119PubMedCrossRefGoogle Scholar
  42. Faber K (2004) Biotransformations in organic chemistry. A textbook, 5th edn. Springer, HeidelbergCrossRefGoogle Scholar
  43. Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841PubMedCrossRefGoogle Scholar
  44. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208PubMedCrossRefGoogle Scholar
  45. Forde J, Vakurov A, Gibson TD, Millner P, Whelehan M, Marisin IW, Ó’Fágáin C (2010) Chemical modification and immobilisation of lipase B from Candida antarctica onto mesoporous silicates. J Mol Cat B 66:203–209CrossRefGoogle Scholar
  46. Galdino AS, Silva RN, Lottermann MT, Alvares AC, de Moraes LM, Torres FA, de Freitas SM, Ulhoa CJ (2011) Biochemical and structural characterization of amy1: an alpha-amylase from Cryptococcus flavus expressed in Saccharomyces cerevisiae. Enzyme Res 30:157294Google Scholar
  47. Garay LA, Sitepu IR, Cajka T, Chandra I, Shi S, Lin T, German JB, Fiehn O, Boundy-Mills KL (2016) Eighteen new oleaginous yeast species. J Ind Microbiol Biotechnol 43:887–900PubMedCrossRefGoogle Scholar
  48. de García V, Brizzio S, Libkind D, Buzzini P, van Broock M (2007) Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia, Argentina. FEMS Microbiol Ecol 59:331–341PubMedCrossRefGoogle Scholar
  49. de García V, Brizzio S, van Broock M (2012) Yeasts from glacial ice of Patagonian Andes, Argentina. FEMS Microbiol Ecol 82:540–550PubMedCrossRefGoogle Scholar
  50. Gerday C (2014) Fundamentals of cold-adapted yeasts. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, HeidelbergGoogle Scholar
  51. Gerday C, Aittaleb M, Arpigny JL, Baise E, Chessa JP, Garsoux G, Petrescu I, Feller G (1997) Psychrophilic enzymes: a thermodynamic challenge. Biochim Biophys Acta 1342:119–131PubMedCrossRefGoogle Scholar
  52. Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trend Biotechnol 18:103–107CrossRefGoogle Scholar
  53. Gomes J, Gomes I, Steiner W (2000) Thermolabile xylanase of the Antarctic yeast Cryptococcus adeliae: production and properties. Extremophiles 4:227–235PubMedCrossRefGoogle Scholar
  54. Gotor-Fernandéz V, Busto E, Gotor V (2006) Candida antarctica lipase B: an ideal biocatalyst for the preparation of nitrogenated organic compounds. Adv Synth Catal 348:797–812CrossRefGoogle Scholar
  55. Gruber CC, Pleiss J (2012) Lipase B from Candida antarctica binds to hydrophobic substrate–water interfaces via hydrophobic anchors surrounding the active site entrance. J Mol Catal B 84:48–54CrossRefGoogle Scholar
  56. Gunde-Cimerman N, Plemenitaš A, Buzzini P (2014) Changes in lipids composition and fluidity of yeast plasma membrane as response to cold. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, Heidelberg, pp 3–22Google Scholar
  57. Gutarra MLE, Romero O, Abian O, Torres FAG, Freire DMG, Castro AM, Guisan JM, Palomo JM (2011) Enzyme surface glycosylation in the solid phase: improved activity and selectivity of Candida antarctica lipase B. Chem Cat Chem 3:1902–1910Google Scholar
  58. Habeych DI, Juhl PB, Pleiss J, Venegas D, Eggink G, Boeriu CG (2011) Biocatalytic synthesis of polyesters from sugar-based building blocks using immobilized Candida antarctica lipase B. J Mol Catal B 71:1–9CrossRefGoogle Scholar
  59. Hamid B, Singh P, Mohiddin FA, Sahay S (2013) Partial characterization of cold-active β-galactosidase activity produced by Cystophallobaidium capatitum SPY11 and Rodotorella musloganosa PT1. Endocytobiosis Cell Res 24:23–26Google Scholar
  60. Hashim NH, Bharudin I, Nguong DL, Higa S, Bakar FD, Nathan S, Rabu A, Kawahara H, Illias RM, Najimudin N, Mahadi NM, Murad AM (2013) Characterization of Afp1, an antifreeze protein from the psychrophilic yeast Glaciozyma antarctica PI12. Extremophiles 17:63–73PubMedCrossRefGoogle Scholar
  61. Hawksworth DL (2004) Fungal diversity and its implications for genetic resource collections. Stud Mycol 50:9–18Google Scholar
  62. Hou J, Tyo KE, Liu Z, Petranovic D, Nielsen J (2012) Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res 12:491–510PubMedCrossRefGoogle Scholar
  63. Huston AL (2008) Biotechnological aspects of cold-adapted enzymes. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 347–363CrossRefGoogle Scholar
  64. Javed A, Qazi JI (2016) Psychrophilic microbial enzymes implications in coming biotechnological processes. ASRJETS 23:2313–4410Google Scholar
  65. Jiru TM, Abate D, Kiggundu N, Pohl C, Groenewald M (2016) Oleaginous yeasts from Ethiopia. AMB Express 6:78PubMedPubMedCentralCrossRefGoogle Scholar
  66. Johnson EA, Echavarri-Erasun C (2011) Yeast biotechnology. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts. A taxonomy study, vol 1. Elsevier, New York, pp 21–44CrossRefGoogle Scholar
  67. Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470PubMedCrossRefGoogle Scholar
  68. Juhl PB, Doderer K, Hollmann F, Thum O, Pleiss J (2010) Engineering of Candida antarctica lipase B for hydrolysis of bulky carboxylic acid esters. J Biotechnol 150:474–480PubMedCrossRefGoogle Scholar
  69. Kahveci D, Xu X (2012) Bioimprinted immobilization of Candida antarctica lipase A for concentration of omega-3 polyunsaturated fatty acids. J Am Oil Chem Soc 89:1839–1845CrossRefGoogle Scholar
  70. Kandror O, DeLeon A, Goldberg AL (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci U S A 99:9727–9732PubMedPubMedCentralCrossRefGoogle Scholar
  71. Karasová-Lipovová P, Strnad H, Spiwok V, Spiwok V, Malá S, Králová B, Russell NJ (2003) The cloning, purification and characterisation of a cold-active b-galactosidase from the psychrotolerant Antarctic bacterium Arthrobacter sp. C2–2. Enzyme Microb Technol 33:836–844CrossRefGoogle Scholar
  72. Kasana RC, Gulati A (2011) Cellulases from psychrophilic microorganisms: a review. J Basic Microbiol 51:572–579PubMedCrossRefGoogle Scholar
  73. Kawahara H (2008) Cryoprotectants and ice-binding proteins. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 229–246CrossRefGoogle Scholar
  74. Kirk O, Christensen MW (2002) Lipases from Candida antarctica: unique biocatalysts from a unique origin. Org Process Res Dev 6:446–451CrossRefGoogle Scholar
  75. Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 21:377–397CrossRefGoogle Scholar
  76. Krishna H, Persson MM, Bornscheuer UT (2002) Enantioselective transesterification of a tertiary alcohol by lipase A from Candida antarctica. Tetrahedron Asymmetry 13:2693–2696CrossRefGoogle Scholar
  77. Kuddus M, Roohi Arif JM, Ramteke PW (2011) An overview of cold-active microbial a-amylase: adaptation strategies and biotechnological potentials. Biotechnology 10:246–258CrossRefGoogle Scholar
  78. Kuncheva M, Panchev I, Pavlova K, Rusinova-Videva S, Georgieva K, Dimitrova S (2013) Production and characterisation of exopolysaccharide by Antarctic yeast strain Cryptococcus laurentii AL62. Biotechnol Biotechnol Equip 27:4098–4102CrossRefGoogle Scholar
  79. Kurtzman CP, Fell JW, Boekhout T (2011a) The yeasts. A taxonomy study, vol 1–3. Elsevier, New YorkGoogle Scholar
  80. Kurtzman CP, Fell JW, Boekhout T (2011b) Definition, classification and nomenclature of the yeasts. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts. A taxonomy study, vol 1. Elsevier, New York, pp 3–5CrossRefGoogle Scholar
  81. Lachance MA (2006) Yeast biodiversity: how many and how much? In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 1–9Google Scholar
  82. Lario LD, Chaud L, Md A, Converti A, Sette LD, Pessoa A Jr (2015) Production, purification, and characterization of an extracellular acid protease from the marine Antarctic yeast Rhodotorula mucilaginosa L7. Fungal Biol 119:1129–1136PubMedCrossRefGoogle Scholar
  83. Lee JK, Park KS, Park S, Park H, Song YH, Kang SH, Kim HJ (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology 60:222–228PubMedCrossRefGoogle Scholar
  84. Lee SG, Koh HY, Lee JH, Kang SH, Kim HJ (2012) Cryopreservative effects of the recombinant ice-binding protein from the Arctic yeast Leucosporidium sp. on red blood cells. Appl Biochem Biotechnol 167:824–834PubMedCrossRefGoogle Scholar
  85. Levinson WE, Kurtzman CP, Kuo TM (2006) Production of itaconic acid by Pseudozyma antarctica NRRL Y-7808 under nitrogen-limited growth conditions. Enzym Microb Technol 39:824–827CrossRefGoogle Scholar
  86. Liese A, Weelbach K, Wandrey C (2000) Industrial biotransformations, 2nd edn. Wiley, WeinheimCrossRefGoogle Scholar
  87. Liu XZ, Wang QM, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov A, Boekhout T, Bai FY (2015) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147PubMedCrossRefGoogle Scholar
  88. Mannazzu I, Landolfo S, Lopes da Silva T, Buzzini P (2015) Red yeasts and carotenoid production: outlining a future for non-conventional yeasts of biotechnological interest. World J Microbiol Biotechnol 31:1665–1673PubMedCrossRefGoogle Scholar
  89. Margesin R, Feller G (2010) Biotechnological applications of psychrophiles. Environ Technol 31:835–844PubMedCrossRefGoogle Scholar
  90. Margesin R, Fauster V, Fonteyne PA (2005) Characterization of cold-active pectate lyases from psychrophilic Mrakia frigida. Lett Appl Microbiol 40:453–459PubMedCrossRefGoogle Scholar
  91. Miletić N, Loos K (2009) Over-stabilization of chemically modified and cross-linked Candida antarctica lipase B using various epoxides and diepoxides. Aust J Chem 62:799–805CrossRefGoogle Scholar
  92. Mohammadi S, Parvizpour S, Razmara J, Abu Bakar FD, Illias RM, Mahadi NM, Murad AM (2016) Structure prediction of a novel exo-β-1,3-glucanase: insights into the cold adaptation of psychrophilic yeast Glaciozyma antarctica PI12. Interdiscip Sci Comput Life Sci. doi: 10.1007/s12539-016-0180-9 Google Scholar
  93. Morita T, Fukuoka T, Imura T, Kitamoto D (2013) Production of mannosylerythritol lipids and their application in cosmetics. Appl Microbiol Biotechnol 97:4691–4700PubMedCrossRefGoogle Scholar
  94. Nakagawa T, Yamada K, Miyaji T, Tomizuka N (2002) Cold-active pectinolytic activity of psychrophilic basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. J Biosci Bioeng 94:175–177PubMedCrossRefGoogle Scholar
  95. Nakagawa T, Nagaoka T, Miyaji T, Tomizuka N (2005a) Cold-active polygalacturonase from psychrophilic basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. Biosci Biotechnol Biochem 69:419–421PubMedCrossRefGoogle Scholar
  96. Nakagawa T, Nagaoka T, Miyaji T, Tomizuka N (2005b) A cold-active pectin lyase from the psychrophilic and basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. Biotechnol Appl Biochem 42:193–196PubMedCrossRefGoogle Scholar
  97. Nakagawa T, Ikehata R, Uchino M (2006) Cold-active acid β-galactosidase activity of isolated psychrophilic-basidiomycetous yeast Guehomyces pullulans. Microbiol Res 161:75–79PubMedCrossRefGoogle Scholar
  98. Ogrydziak DM (1993) Yeast extracellular proteases. Crit Rev Biotechnol 13:1–55PubMedCrossRefGoogle Scholar
  99. Pan J, Chen XL, Shun CY, He HL, Zhang YZ (2005) Stabilization of cold-adapted protease MCP-01 promoted by trehalose: prevention of the autolysis. Protein Pept Lett 12:375–378PubMedCrossRefGoogle Scholar
  100. Park KS, Do H, Lee JH, Park SI, Ej K, Kim SJ, Kang SH, Kim HJ (2012) Characterization of the ice-binding protein from Arctic yeast Leucosporidium sp. AY30. Cryobiology 64:286–296PubMedCrossRefGoogle Scholar
  101. Parvizpour S, Razmara J, Jomah AF, Shamsir MS, Illias RM (2015) Structural prediction of a novel laminarinase from the psychrophilic Glaciozyma Antarctica PI12 and its temperature adaptation analysis. J Mol Model 21:63PubMedCrossRefGoogle Scholar
  102. Parvizpour S, Razmara J, Shamsir MS, Illias RM, Abdul Murad AM (2016) The role of alternative salt bridges in cold adaptation of a novel psychrophilic laminarinase. J Biomol Struct Dyn 5:1–8Google Scholar
  103. Patel RN (2004) Biocatalytic synthesis of chiral pharmaceutical intermediates. Food Technol Biotechnol 42:305–325Google Scholar
  104. Patkar SA, Björkling F, Zundel M, Schulein M, Svendsen A, Heldt-Hansen HP, Gormsen E (1993) Purification of two lipases from Candida antarctica and their inhibition by various inhibitors. Ind J Chem Sect B 32:76–80Google Scholar
  105. Pavlova K (2014) Production of polymers and other compounds of industrial importance by cold-adapted yeasts. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, Heidelberg, pp 397–416CrossRefGoogle Scholar
  106. Pavlova K, Angelova G, Savova I, Grigorova D, Kupenov L (2002) Studies of Antarctic yeast for b-glucosidase production. World J Microbiol Biotechnol 18:569–573CrossRefGoogle Scholar
  107. Pavlova K, Panchev I, Krachanova M, Gocheva M (2009) Production of an exopolysaccharide by Antarctic yeast. Folia Microbiol 54:343–348CrossRefGoogle Scholar
  108. Pazgier M, Turkiewicz M, Kalinowska H, Bielecki S (2003) The unique cold-adapted extracellular subtilase from psychrophilic yeast Leucosporidium antarcticum. J Mol Catal B Enzym 21:39–42CrossRefGoogle Scholar
  109. Pereyra V, Martinez A, Rufo C, Vero S (2014) Oleaginous yeasts form Uruguay and Antarctica as renewable raw material for biodiesel production. Am J Biosci 2:251–257CrossRefGoogle Scholar
  110. Perez J, Munoz-Dorado J, Rubia T, Martinez J (2002) Bio-degradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63PubMedCrossRefGoogle Scholar
  111. Petrescu I, Lamotte-Brasseur J, Chessa J-P, Ntarima P, Clayessens M, Devreese B, Marino G, Gerday C (2000) Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles 4:137–144PubMedCrossRefGoogle Scholar
  112. Plácido J, Capareda S (2015) Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresour Bioprocess 2:1–12CrossRefGoogle Scholar
  113. Poli A, Anzelmo G, Tommonaro G, Pavlova K, Casaburi A, Nicolaus B (2010) Production and chemical characterization of an exopolysaccharide synthesized by psychrophilic yeast strain Sporobolomyces salmonicolor AL1 isolated from Livingston Island, Antarctica. Folia Microbiol 55:576–581CrossRefGoogle Scholar
  114. Ramli AN, Mahadi NM, Rabu A, Murad AM, Bakar FD, Illias RM (2011) Molecular cloning, expression and biochemical characterisation of a cold-adapted novel recombinant chitinase from Glaciozyma antarctica PI12. Microb Cell Fact 4:10–94Google Scholar
  115. Ramli AN, Mahadi NM, Shamsir MS, Rabu A, Joyce-Tan KH, Murad AM, Illias RM (2012) Structural prediction of a novel chitinase from the psychrophilic Glaciozyma antarctica PI12 and an analysis of its structural properties and function. J Comput Aided Mol Des 26:947–961PubMedCrossRefGoogle Scholar
  116. Rashid FAA, Rahim RA, Ibrahim D (2010) Identification of lipase-producing psychrophilic yeast, Leucosporidium sp. Internet J Microbiol 9(1). doi: 10.5580/1215
  117. Ray MK, Devi KU, Kumar GS, Shivaji S (1992) Extracellular protease from the Antarctic yeast Candida humicola. Appl Environ Microbiol 58:1918–1923PubMedPubMedCentralGoogle Scholar
  118. Rossi M, Buzzini P, Cordisco L, Amaretti A, Sala M, Raimondi S, Ponzoni C, Pagnoni UM, Matteuzzi D (2009) Growth, lipid accumulation and fatty acid composition in obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts. FEMS Microbiol Ecol 69:363–372PubMedCrossRefGoogle Scholar
  119. Rovati JI, Pajot HF, Ruberto L, Mac Cormack W, Figueroa LI (2013) Polyphenolic substrates and dyes degradation by yeasts from 25 de Mayo/King George Island (Antarctica). Yeast 30:459–470PubMedCrossRefGoogle Scholar
  120. Rusinova-Videva S, Pavlova K, Georgieva K (2011) Effect of different carbon sources on biosynthesis of exopolysaccharide from Antarctic strain Cryptococcus. Biotechnol Biotechnol Equip 23:888–891CrossRefGoogle Scholar
  121. Sahay S, Hamid B, Singh P, Ranjan K, Chauhan D, Rana RS, Chaurse VK (2013) Evaluation of pectinolytic activities for oenological uses from psychrotrophic yeasts. Lett Appl Microbiol 57:115–121PubMedCrossRefGoogle Scholar
  122. Santiago M, Ramìrez-Sarmiento CA, Zamora RA, Parra LP (2016) Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front Microbiol 7:1408. doi: 10.3389/fmicb.2016.01408 PubMedPubMedCentralGoogle Scholar
  123. Schulze I, Hansen S, Großhans S, Rudszuck T, Ochsenreither K, Syldatk C, Neumann A (2014) Characterization of newly isolated oleaginous yeasts – Cryptococcus podzolicus, Trichosporon porosum and Pichia segobiensis. AMB Express 4:24PubMedPubMedCentralCrossRefGoogle Scholar
  124. Scorzetti G, Petrescu I, Yarrow D, Fell JW (2000) Cryptococcus adeliensis sp. nov., a xylanase producing basidiomycetous yeast from Antarctica. Antonie Van Leeuwenhoek 77:153–157PubMedCrossRefGoogle Scholar
  125. Sheridan PP, Brenchley JE (2000) Characterization of a salt-tolerant family 42 b galactosidase from a psychrophilic Antarctic Planococcus isolate. Appl Environ Microbiol 66:2438–2444PubMedPubMedCentralCrossRefGoogle Scholar
  126. Shivaji S, Prasad GS (2009) Antarctic yeasts: biodiversity and potential applications. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, Berlin, pp 3–16CrossRefGoogle Scholar
  127. Sibirny AA, Scheffers L (2002) Thematic section biochemistry, genetics, biotechnology and ecology of non-conventional yeasts. FEMS Yeast Res 2:293Google Scholar
  128. Singh P, Singh MV, Tsuji M, Prasad GS, Hoshino T (2014) Rhodotorula svalbardensis sp. nov., a novel yeast species isolated from cryoconite holes of Ny-Ålesund, Arctic. Cryobiology 68:122–128PubMedCrossRefGoogle Scholar
  129. Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, Boundy-Mills KL (2014) Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnol Adv 32:1336–1360PubMedCrossRefGoogle Scholar
  130. Song C, Chi Z, Li J, Wang X (2010) β-Galactosidase production by the psychrotolerant yeast Guehomyces pullulans 17–1 isolated from sea sediment in Antarctica and lactose hydrolysis. Bioprocess Biosyst Eng 33:1025–1031PubMedCrossRefGoogle Scholar
  131. Starmer WT, Lachance MA (2011) Yeast ecology. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts. A taxonomy study, vol 1. Elsevier, New York, pp 65–83CrossRefGoogle Scholar
  132. Szczesna-Antczak M, Kaminska J, Florczak T, Turkiewicz M (2014) Cold-active yeast lipases: recent issues and future prospects. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, HeidelbergGoogle Scholar
  133. Tobe S, Takami T, Ikeda S, Mitsugi K (1976) Production and some enzymatic properties of alkaline proteinase by Candida lipolytica. Argic Biol Chem 40:1087–1092Google Scholar
  134. Tsuji M, Yokota Y, Shimohara K, Kudoh S, Hoshino T (2013a) An application of wastewater treatment in a cold environment and stable lipase production of Antarctic basidiomycetous yeast Mrakia blollopis. PLoS One 8:e59376PubMedPubMedCentralCrossRefGoogle Scholar
  135. Tsuji M, Goshima T, Matsushika A, Kudoh S, Hoshino T (2013b) Direct ethanol fermentation from lignocellulosic biomass by Antarctic basidiomycetous yeast Mrakia blollopis under a low temperature condition. Cryobiology 67:241–243PubMedCrossRefGoogle Scholar
  136. Tsuji M, Yokota Y, Kudoh S, Hoshino T (2014) Improvement of direct ethanol fermentation from woody biomasses by the Antarctic basidiomycetous yeast, Mrakia blollopis, under a low temperature condition. Cryobiology 68:303–305PubMedCrossRefGoogle Scholar
  137. Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Vaughan-Martini A (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83PubMedCrossRefGoogle Scholar
  138. Turchetti B, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Onofri A, Buzzini P (2013) Influence of abiotic variables on culturable yeast diversity in two distinct Alpine glaciers. FEMS Microbiol Ecol 86:327–340PubMedCrossRefGoogle Scholar
  139. Turkiewicz M, Pazgier M, Kalinowska H, Bielecki S (2003) A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles 7:435–442PubMedCrossRefGoogle Scholar
  140. Turkiewicz M, Pazgier M, Donachie SP, Kalinowska H (2005) Invertase and a-glucosidase production by the endemic Antarctic marine yeast Leucosporidium antarcticum. Pol Polar Res 26:125–136Google Scholar
  141. Vlaev S, Rusinova-Videva S, Pavlova K, Kuncheva M, Panchev I, Dobreva S (2013) Submerged culture process for biomass and exopolysaccharide production by Antarctic yeast: some engineering considerations. Appl Microbiol Biotechnol 97:5303–5313PubMedCrossRefGoogle Scholar
  142. Wang QM, Groenewald M, Takashima M, Theelen B, Han PJ, Liu T, Boekhout T, Bai FY (2015a) Phylogeny of yeasts and related filamentous fungi within Pucciniomycotina determined from multigene sequence analyses. Stud Mycol 81:27–53PubMedPubMedCentralCrossRefGoogle Scholar
  143. Wang QM, Yurkov A, Göker M, Lumbsch HT, Leavitt SD, Groenewald M, Theelen B, Liu XZ, Boekhout T, Bai FY (2015b) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:149–289PubMedCrossRefGoogle Scholar
  144. Yu P, Wang XT, Liu JW (2015) Purification and characterization of a novel cold-adapted phytase from Rhodotorula mucilaginosa strain JMUY14 isolated from Antarctic. J Basic Microbiol 55:1029–1039PubMedCrossRefGoogle Scholar
  145. Zaliha RN, Salleh AB, Basri M, Mohamad Ali MSB (2012) Cold active enzyme and method thereof. US Patent 2012/0058514 A1Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Giorgia Tasselli
    • 1
  • Sara Filippucci
    • 1
  • Ciro Sannino
    • 1
  • Benedetta Turchetti
    • 1
  • Pietro Buzzini
    • 1
    Email author
  1. 1.Department of Agricultural, Food and Environmental SciencesUniversity of PerugiaPerugiaItaly

Personalised recommendations