Advertisement

Permafrost Bacteria in Biotechnology: Biomedical Applications

  • Anatoli BrouchkovEmail author
  • Vladimir Melnikov
  • Ludmila Kalenova
  • Oksana Fursova
  • Gennady Pogorelko
  • Vasiliy Potapov
  • Nadezhda Fursova
  • Sergei Ignatov
  • Evgeny Brenner
  • Vladislav Bezrukov
  • Khachik Muradian
Chapter

Abstract

Mechanisms of survival and growth capacities of microorganisms trapped in permafrost are still under discussion, but the very fact of their existence for thousands of years is evidence of their phenomenal viability. One of these nonpathogenic bacteria, identified as Bacillus cereus strain BF, was found in Yakutia and was capable of enhancing longevity and immunity in Drosophila and mice and showed probiotic activity on the mice Salmonella enterica model. In developing Drosophila melanogaster, the application of Bacillus cereus strain BF resulted in a dose-dependent increase of the growth rate of Drosophila and in a decrease of larval mortality, whereas in adult imagoes gaseous exchange (VO2 and VCO2), spontaneous motor activity, and stress resistance were enhanced.

References

  1. Abyzov SS, Bobin NE, Kudryashov BB (1979) Microbiological studies of glacier in the Central Antarctica. Izv AN SSSR Biol Ser 6:828–836Google Scholar
  2. Aleksandrov VY (1975) Kletki, makromolekuly i temperature (Cells, macromolecules, and temperature). Nauka, Leningrad (in Russian)Google Scholar
  3. Ashcroft F (2007) Life at the extremes. Harper and Collins, New YorkGoogle Scholar
  4. Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson H (2003) Reproduction and metabolism at 10°C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326CrossRefPubMedGoogle Scholar
  5. Bakulina NT, Spektor VB (2000) Reconstruction of climatic parameters of neogene in Yakutia by palynology data. In: Maksimov GN, Fedorov AN (eds) Klimat i merzlota (Climate and Permafrost). Institut Merzlotovedeniya: Yakutsk, pp 21–32 (in Russian)Google Scholar
  6. Baranova YP, Il’inskaya IA, Nikitin VP et al (1976) Miocene of the Mamontova Gora. Nauka, MoscowGoogle Scholar
  7. Brenner EV, Brouchkov AV, Kurilshikov AM et al (2013) Draft genome sequence of Bacillus cereus strain F, isolated from ancient permafrost. Genome Announc 1(4):e00561–e00513. doi: 10.1128/genomeA.00561-13 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brouchkov AV, Vlasov AN, Merzlyakov VP, Talonov AV (1995) The effect of local phase transitions on deformation of frozen low plasticity soils. Geoekologiya 5:71–77Google Scholar
  9. Brouchkov AV, Mel'nikov VP, Sukhovei IG, Griva GI, Repin VE, Kalenova LF, Brenner EV, Subbotin AM, Trofimova IB, Tanaka M, Kataiama T, Utsumi M (2009) Relict microorganisms of cryolithozone as possible objects of gerontology. Adv Gerontol 22:253–258Google Scholar
  10. Brouchkov AV, Bezrukov VV, Griva GI, Myradyan HK (2012) The effects of the relict microorganism B. sp. on development, gas exchange, spontaneous motor activity, stress resistance, and survival of Drosophila melanogaster. Adv Gerontol 2:19–26CrossRefGoogle Scholar
  11. Cairns J, Overbaugh J, Miller S (1994) The origin of mutations. Nature 335:142–145CrossRefGoogle Scholar
  12. Clein JS, Schimel JP (1995) Microbial activity of tundra and taiga soils at subzero temperatures. Soil Biol Biochem 27:1231–1234CrossRefGoogle Scholar
  13. Deng SX, Cheng AC, Wang MS, Cao P (2007) Gastrointestinal tract distribution of Salmonella enteritidis in orally infected mice with a species-specific fluorescent quantitative polymerase chain reaction. World J Gastroenterol 13:6568–6574CrossRefPubMedPubMedCentralGoogle Scholar
  14. Duc LH, Hong HA, Barbosa TM, Henriques AO, Cutting SM (2004) Characterization of Bacillus probiotics available for human use. Appl Environm Microbiol 70(4):2161–2171CrossRefGoogle Scholar
  15. Ershov ED (1998) General geocryology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  16. Friedmann EI (1994) Permafrost as microbial habitat. In: Tiedje JM, Gilichinsky D (eds) Viable microorganisms in permafrost. Russian Academy of Sciences, Pushchino, pp 21–26Google Scholar
  17. Fursova O, Potapov V, Brouchkov A, Pogorelko G, Griva G, Fursova N, Ignatov S (2012) Probiotic activity of a bacterial strain isolated from ancient permafrost against salmonella infection in mice. Probiotics Antimicrob Proteins 4:145–153CrossRefPubMedGoogle Scholar
  18. Granum PE, Lund T (1997) Bacillus cereus and its food poisoning toxins. FEMS Microbiol Lett 157:223–228CrossRefPubMedGoogle Scholar
  19. Jaenicke R (1996) Stability and folding of ultrastable proteins: eye lens crystallins and enzymes from thermophiles. FASEB 10:84–92Google Scholar
  20. Katayama T, Tanaka M, Moriizumi J, Nakamura T, Brouchkov A, Douglas T, Fukuda M, Tomita M, Asano K (2007) Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25,000 years. Appl Environ Microbiol 73:2360–2363CrossRefPubMedPubMedCentralGoogle Scholar
  21. Levy M, Miller SL (1998) The stability of the RNA bases: implications for the origin of life. Biochemistry 95(14):7933–7938Google Scholar
  22. Lozina-Lozinsky LK (1972) Outlines of cryobiology. Nauka, LeningradGoogle Scholar
  23. Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361CrossRefPubMedGoogle Scholar
  24. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ohl ME, Miller SI (2001) Salmonella: a model for bacterial pathogenesis. Annu Rev Med 52:259–274CrossRefPubMedGoogle Scholar
  26. Repin VE, Pugachev VG, Taranov OS et al (2007) Potential hazard of microorganisms – comers from the past. In: Boyeskorov GG, Tikhonov AN, Suzuki N (eds) Yukagir Mammoth. St Peterburg State University, Moscow, pp 183–190Google Scholar
  27. Silva AM, Bambirra EA, Oliveira AL, Souza PP, Gomes DA, Vieira EC, Nicoli JR (1999) Protective effect of bifidus milk on the experimental infection with Salmonella enteritidis subsp. typhimurium in conventional and gnotobiotic mice. J Appl Microbiol 86:331–336CrossRefPubMedGoogle Scholar
  28. Sukupolvi S, Edelstein A, Rhen M, Normark SJ, Pfeifer JD (1997) Development of a murine model of chronic Salmonella infection. Infect Immun 65:838–842PubMedPubMedCentralGoogle Scholar
  29. Szabó I, Wieler LH, Tedin K, Scharek-Tedin L, Taras D, Hensel A, Appel B, Nöckler K (2009) Influence of probiotic strain of Enterococcus faecium on Salmonella enterica serovar Typhimurium DT104 infection in a porcine animal infection mode. Appl Environ Microbiol 75:2621–2628CrossRefPubMedPubMedCentralGoogle Scholar
  30. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  31. Willerslev E, Cooper A (2005) Ancient DNA. Proc R Soc B 272:3–16CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Anatoli Brouchkov
    • 1
    • 3
    Email author
  • Vladimir Melnikov
    • 1
    • 2
  • Ludmila Kalenova
    • 1
    • 2
  • Oksana Fursova
    • 3
  • Gennady Pogorelko
    • 4
  • Vasiliy Potapov
    • 5
  • Nadezhda Fursova
    • 5
  • Sergei Ignatov
    • 5
  • Evgeny Brenner
    • 6
  • Vladislav Bezrukov
    • 7
  • Khachik Muradian
    • 7
  1. 1.Tyumen State UniversityTyumenRussia
  2. 2.Tyumen Scientific Center, Siberian BranchRussian Academy of ScienceTyumenRussia
  3. 3.Lomonosov Moscow State UniversityMoscowRussia
  4. 4.Iowa State UniversityAmesUSA
  5. 5.State Research Center for Applied Microbiology and Biotechnology, ObolenskMoscow RegionRussia
  6. 6.Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of ScienceNovosibirskRussia
  7. 7.State Institute of Gerontology of National Academy of Medical Sciences of UkraineKievUkraine

Personalised recommendations