Advertisement

Psychrophiles as a Source of Novel Antimicrobials

  • Erik Borchert
  • Stephen A. Jackson
  • Fergal O’Gara
  • Alan D. W. DobsonEmail author
Chapter

Abstract

Cold environments such as Arctic and Antarctic regions and the deep sea are richly populated by microbes which encounter the same selective pressures and/or even more than their counterparts from moderate or warm environments. Microbes from moderate and warm environments have been extensively studied for their ability to produce antimicrobial compounds, and new results are scarce. Taking into account the rapid emergence of antimicrobial resistance, we need to look for new sources of antimicrobials. Here in this review, we summarise the knowledge of new antimicrobials or antimicrobial activity from microorganisms from different cold environments to date. A special focus due to their richness in bioactive compounds is given to marine environments; nonetheless, compounds from other sources are mentioned. The later-described compounds all display some kind of beneficial antimicrobial activity and are part of many different chemical classes of antimicrobial compounds (lantibiotics, spirotetronates, microcins, synoxazolidinones, indole alkaloids, monanchocidins, etc.). Furthermore, studies which identified antimicrobial producers but did not identify the actual produced compound are mentioned, and promising sources for future bioprospecting are discussed.

References

  1. Abbas S, Kelly M, Bowling J, Sims J, Waters A, Hamann M (2011) Advancement into the Arctic region for bioactive sponge secondary metabolites. Mar Drugs 9(11):2423–2437CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alanis AJ (2005) Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 36(6):697–705CrossRefPubMedGoogle Scholar
  3. Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MP (2016) Marine natural products. Nat Prod Rep 33:382–431CrossRefPubMedGoogle Scholar
  4. Borchert E, Jackson SA, O’Gara F, Dobson AD (2016) Diversity of natural product biosynthetic genes in the microbiome of the deep sea sponges Inflatella pellicula, Poecillastra compressa, and Stelletta normani. Front Microbiol 7:1027CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brown ED, Wright GD (2016) Antibacterial drug discovery in the resistance era. Nature 529(7586):336–343CrossRefPubMedGoogle Scholar
  6. Cruz PG, Fribley AM, Miller JR, Larsen MJ, Schultz PJ, Jacob RT, Tamayo-Castillo G, Kaufman RJ, Sherman DH (2015) Novel lobophorins inhibit oral cancer cell growth and induce Atf4- and Chop-dependent cell death in murine fibroblasts. ACS Med Chem Lett 6(8):877–881CrossRefPubMedPubMedCentralGoogle Scholar
  7. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fleming A (2001) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Bull World Health Org 79(8):780–790PubMedPubMedCentralGoogle Scholar
  9. Fondi M, Orlandini V, Perrin E, Maida I, Bosi E, Papaleo MC, Michaud L, Lo Giudice A, de Pascale D, Tutino ML, Liò P, Fani R (2014) Draft genomes of three Antarctic Psychrobacter strains producing antimicrobial compounds against Burkholderia cepacia complex, opportunistic human pathogens. Mar Genomics 13:37–38CrossRefPubMedGoogle Scholar
  10. Gesheva V, Vasileva-Tonkova E (2012) Production of enzymes and antimicrobial compounds by halophilic Antarctic Nocardioides sp. grown on different carbon sources. World J Microbiol Biotechnol 28(5):2069–2076CrossRefPubMedGoogle Scholar
  11. Hemala L, Zhang D, Margesin R (2014) Cold-active antibacterial and antifungal activities and antibiotic resistance of bacteria isolated from an alpine hydrocarbon-contaminated industrial site. Res Microbiol 165(6):447–456CrossRefPubMedGoogle Scholar
  12. Kim MK, Park H, Oh TJ (2014) Antibacterial and antioxidant capacity of polar microorganisms isolated from Arctic lichen Ochrolechia sp. Pol J Microbiol 63(3):317–322PubMedGoogle Scholar
  13. Lebar MD, Heimbegner JL, Baker BJ (2007) Cold-water marine natural products. Nat Prod Rep 24(4):774–797CrossRefPubMedGoogle Scholar
  14. Levy SB (2002) From tragedy the antibiotic era is born. In: Levy SB (ed) The antibiotic paradox: how the misuse of antibiotics destroys their curative powers. Perseus, Cambridge, pp 1–14Google Scholar
  15. Lo Giudice A, Bruni V, Michaud L (2007) Characterization of Antarctic psychrotrophic bacteria with antibacterial activities against terrestrial microorganisms. J Basic Microbiol 47(6):496–505CrossRefPubMedGoogle Scholar
  16. Makarieva TN, Tabakmaher KM, Guzii AG, Denisenko VA, Dmitrenok PS, Shubina LK, Kuzmich AS, Lee HS, Stonik VA (2011) Monanchocidins B-E: polycyclic guanidine alkaloids with potent antileukemic activities from the sponge Monanchora pulchra. J Nat Prod 74(9):1952–1988CrossRefPubMedGoogle Scholar
  17. McAuliffe O, Ross RP, Hill C (2001) Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev 25(3):285–308CrossRefPubMedGoogle Scholar
  18. Ohizumi Y, Sasaki S, Kusumi T, Ohtani II (1996) Ptilomycalin A, a novel Na+, K(+)- or Ca2(+)-ATPase inhibitor, competitively interacts with ATP at its binding site. Eur J Pharmacol 310(1):95–98CrossRefPubMedGoogle Scholar
  19. Orlandini V, Maida I, Fondi M, Perrin E, Papaleo MC, Bosi E, de Pascale D, Tutino ML, Michaud L, Lo Giudice A, Fani R (2014) Genomic analysis of three sponge-associated Arthrobacter Antarctic strains, inhibiting the growth of Burkholderia cepacia complex bacteria by synthesizing volatile organic compounds. Microbiol Res 169(7–8):593–601CrossRefPubMedGoogle Scholar
  20. Pan HQ, Zhang SY, Wang N, Li ZL, Hua HM, Hu JC, Wang SJ (2013) New spirotetronate antibiotics, lobophorins H and I, from a South China Sea-derived Streptomyces sp. 12A35. Mar Drugs 11(10):3891–3901CrossRefPubMedPubMedCentralGoogle Scholar
  21. Papaleo MC, Fondi M, Maida I, Perrin E, Lo Giudice A, Michaud L, Mangano S, Bartolucci G, Romoli R, Fani R (2012) Sponge-associated microbial Antarctic communities exhibiting antimicrobial activity against Burkholderia cepacia complex bacteria. Biotechnol Adv 30(1):272–293CrossRefPubMedGoogle Scholar
  22. Phelan RW, Barret M, Cotter PD, O’Connor PM, Chen R, Morrissey JP, Dobson AD, O’Gara F, Barbosa TM (2013) Subtilomycin: a new lantibiotic from Bacillus subtilis strain MMA7 isolated from the marine sponge Haliclona simulans. Mar Drugs 11(6):1878–1898CrossRefPubMedPubMedCentralGoogle Scholar
  23. Sánchez LA, Hedström M, Delgado MA, Delgado OD (2010) Production, purification and characterization of serraticin A, a novel cold-active antimicrobial produced by Serratia proteamaculans 136. J Appl Microbiol 109(3):936–945CrossRefPubMedGoogle Scholar
  24. Shymanska NV, An IH, Pierce JG (2014) A rapid synthesis of 4-oxazolidinones: total synthesis of synoxazolidinones A and B. Angew Chem Int Ed Engl 53(21):5401–5404CrossRefPubMedGoogle Scholar
  25. Tadesse M, Strøm MB, Svenson J, Jaspars M, Milne BF, Tørfoss V, Andersen JH, Hansen E, Stensvåg K, Haug T (2010) Synoxazolidinones A and B: novel bioactive alkaloids from the ascidian Synoicum pulmonaria. Org Lett 12(21):4752–4755CrossRefPubMedGoogle Scholar
  26. Tadesse M, Tabudravu JN, Jaspars M, Strøm MB, Hansen E, Andersen JH, Kristiansen PE, Haug T (2011) The antibacterial ent-eusynstyelamide B and eusynstyelamides D, E, and F from the Arctic bryozoan Tegella cf. spitzbergensis. J Nat Prod 74(4):837–841CrossRefPubMedGoogle Scholar
  27. Tapiolas DM, Bowden BF, Abou-Mansour E, Willis RH, Doyle JR, Muirhead AN, Liptrot C, Llewellyn LE, Wolff CW, Wright AD, Motti CA (2009) Eusynstyelamides A, B, and C, nNOS inhibitors, from the ascidian Eusynstyela latericius. J Nat Prod 72(6):1115–1120CrossRefPubMedGoogle Scholar
  28. Trepos R, Cervin G, Hellio C, Pavia H, Stensen W, Stensvåg K, Svendsen JS, Haug T, Svenson J (2014) Antifouling compounds from the sub-arctic ascidian Synoicum pulmonaria: synoxazolidinones A and C, pulmonarins A and B, and synthetic analogues. J Nat Prod 77(9):2105–2113CrossRefPubMedGoogle Scholar
  29. Vieweg L, Reichau S, Schobert R, Leadlay PF, Süssmuth RD (2014) Recent advances in the field of bioactive tetronates. Nat Prod Rep 31(11):1554–1584CrossRefPubMedGoogle Scholar
  30. Wang Q, Song F, Xiao X, Huang P, Li L, Monte A, Abdel-Mageed WM, Wang J, Guo H, He W, Xie F, Dai H, Liu M, Chen C, Xu H, Piggott AM, Liu X, Capon RJ, Zhang L (2013) Abyssomicins from the South China Sea deep-sea sediment Verrucosispora sp.: natural thioether Michael addition adducts as antitubercular prodrugs. Angew Chem Int Ed Engl 52(4):1231–1234CrossRefPubMedGoogle Scholar
  31. Xiao J, Luo Y, Xie S, Xu J (2011) Serinicoccus profundi sp. nov., an actinomycete isolated from deep-sea sediment, and emended description of the genus Serinicoccus. Int J Syst Evol Microbiol 61(Pt 1):16–19CrossRefPubMedGoogle Scholar
  32. Yang XW, Zhang GY, Ying JX, Yang B, Zhou XF, Steinmetz A, Liu YH, Wang N (2013) Isolation, characterization, and bioactivity evaluation of 3-((6-methylpyrazin-2-yl)methyl)-1H-indole, a new alkaloid from a deep-sea-derived actinomycete Serinicoccus profundi sp. nov. Mar Drugs 11(1):33–39CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Erik Borchert
    • 1
  • Stephen A. Jackson
    • 1
  • Fergal O’Gara
    • 1
    • 2
    • 3
  • Alan D. W. Dobson
    • 1
    • 4
    Email author
  1. 1.School of Microbiology, University College CorkNational University of IrelandCorkIreland
  2. 2.Biomerit Research Centre, University College CorkNational University of IrelandCorkIreland
  3. 3.School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityPerthAustralia
  4. 4.Environmental Research Institute, University College CorkNational University of IrelandCorkIreland

Personalised recommendations