Heterologous Protein Expression in Pseudoalteromonas haloplanktis TAC125

  • Ermenegilda Parrilli
  • Maria Luisa TutinoEmail author


The Antarctic strain Pseudoalteromonas haloplanktis TAC125 is considered one of the model organisms of cold-adapted bacteria, and during last years, it has been exploited as an alternative expression system for recombinant protein production. P. haloplanktis TAC125 was the first Antarctic bacterium in which an efficient gene-expression technology was set up, and several generations of cold-adapted gene-expression vectors allow the production of recombinant proteins either by constitutive or inducible systems and to address the product toward any cell compartment or to the extracellular medium. Moreover, the development of synthetic media and efficient fermentation schemes, to upscale the recombinant protein production in automatic bioreactors, makes the industrial application of P. haloplanktis TAC125 more achievable and concrete. The cellular physicochemical conditions and folding processes in P. haloplanktis TAC125 are quite different from those observed in canonical mesophilic hosts and allowed the production of several difficult-to-express protein products, some of which are of human origin. The recently reported possibility to produce proteins within a range of temperature from 15 to −2.5 °C enhances the chances to improve the conformational quality and solubility of recombinant proteins. This chapter outlines main features and potentiality of this unconventional protein production platform.


  1. Atlas RM, Bartha R (1993) Microbial ecology: fundamentals and applications, 3rd edn. Benjamin/Cummings, Redwood City, CAGoogle Scholar
  2. Blatny JM, Brautaset T, Winther-Larsen HC et al (1997) Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Appl Environ Microbiol 63:370–379PubMedPubMedCentralGoogle Scholar
  3. Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vázquez F, Abasolo I, Giuliani M, Jäntti J, Ferrer P, Saloheimo M, Mattanovich D, Schwartz S Jr, Tutino ML, Villaverde A (2013) Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnol Adv 31(2):140–153CrossRefPubMedGoogle Scholar
  4. Cusano AM, Parrilli E, Marino G et al (2006) A novel genetic system for recombinant protein secretion in the Antarctic Pseudoalteromonas haloplanktis TAC125. Microb Cell Fact 5:40CrossRefPubMedPubMedCentralGoogle Scholar
  5. Dragosits M, Frascotti G, Bernard-Granger L, Vázquez F, Giuliani M, Baumann K, Rodríguez-Carmona E, Tokkanen J, Parrilli E, Wiebe MG, Kunert R, Maurer M, Gasser B, Sauer M, Branduardi P, Pakula T, Saloheimo M, Penttilä M, Ferrer P, Luisa Tutino M, Villaverde A, Porro D, Mattanovich D (2011) Influence of growth temperature on the production of antibody Fab fragments in different microbes: a host comparative analysis. Biotechnol Prog 27(1):38–46CrossRefPubMedGoogle Scholar
  6. Duilio A, Madonna S, Tutino ML et al (2004b) Promoters from a cold-adapted bacterium: definition of a consensus motif and molecular characterization of UP regulative elements. Extremophiles 8:125–132CrossRefPubMedGoogle Scholar
  7. Duilio A, Tutino ML, Marino G (2004a) Recombinant protein production in Antarctic Gram-negative bacteria. Methods Mol Biol 267:225–237PubMedGoogle Scholar
  8. Feige MJ, Hendershot LM, Buchner J (2010) How antibodies fold. Trends Biochem Sci 35:189–198CrossRefPubMedGoogle Scholar
  9. Fondi M, Maida I, Perrin E et al (2015) Genome-scale metabolic reconstruction and constraint-based modelling of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Environ Microbiol 17(3):751–766CrossRefPubMedGoogle Scholar
  10. Frey P (1996) The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J 10(4):461–470PubMedGoogle Scholar
  11. Georgiou G, Valax P (1996) Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotechnol 7:190–197CrossRefPubMedGoogle Scholar
  12. Giuliani M, Parrilli E, Ferrer P et al (2011) Process optimization for recombinant protein production in the psychrophilic bacterium Pseudoalteromonas haloplanktis. Process Biochem 46(4):953–959CrossRefGoogle Scholar
  13. Giuliani M, Parrilli E, Sannino F et al (2014) Recombinant production of a single-chain antibody fragment in Pseudoalteromonas haloplanktis TAC125. Appl Microbiol Biotechnol 98:4887–4895CrossRefPubMedGoogle Scholar
  14. Giuliani M, Parrilli E, Sannino F et al (2015) Soluble recombinant protein production in Pseudoalteromonas haloplanktis TAC125. Methods Mol Biol 1258:243–257CrossRefPubMedGoogle Scholar
  15. Giuliani M, Parrilli E, Pezzella C,, et al. (2012) A novel strategy for the construction of genomic mutants of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Methods Mol Biol 824:219-233Google Scholar
  16. Lee PA, Tullman-Ercek D, Georgiou G (2006) The bacterial twin-arginine translocation pathway. Annu Rev Microbiol 60:373–395, ReviewCrossRefPubMedPubMedCentralGoogle Scholar
  17. Jeon YH, Negishi T, Shirakawa M et al (1995) Solution structure of the activator contact domain of the RNA polymerase alpha subunit. Science 270:1495–1497CrossRefPubMedGoogle Scholar
  18. Lewis DE, Adhya S (2015) Molecular mechanisms of transcription initiation at gal promoters and their multi-level regulation by GalR, CRP and DNA loop. Biomolecules 5(4):2782–2807CrossRefPubMedPubMedCentralGoogle Scholar
  19. Luirink J, Sinning I (2004) SRP-mediated protein targeting: structure and function revisited. Biochim Biophys Acta 1694(1–3):17–35PubMedGoogle Scholar
  20. Luo ZH, Hua ZC (1998) Increased solubility of glutathione S-transferase-P16 (GST-p16) fusion protein by co-expression of chaperones GroES and GroEL in Escherichia coli. Biochem Mol Biol Int 46:471–477PubMedGoogle Scholar
  21. Matlack KE, Mothes W, Rapoport TA (1998) Protein translocation: tunnel vision. Cell 92(3):381–390CrossRefPubMedGoogle Scholar
  22. Medigue C, Krin E, Pascal G et al (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mitra A, Chakrabarti KS, Shahul Hameed MS et al (2005) High level expression of peptides and proteins using cytochrome b5 as a fusion host. Protein Expr Purif 41:84–97CrossRefPubMedGoogle Scholar
  24. Miyake R, Kawamoto J, Wei JL et al (2007) Construction of a low-temperature protein expression system using a cold-adapted bacterium, Shewanella sp. strain Ac10, as the host. Appl Environ Microbiol 73(15):4849–4856CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mykytczuk NC, Foote SJ, Omelon CR et al (2013) Bacterial growth at -15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J 7(6):1211–1226CrossRefPubMedPubMedCentralGoogle Scholar
  26. Nunn BL, Slattery KV, Cameron KA et al (2015) Proteomics of Colwellia psychrerythraea at subzero temperatures—a life with limited movement, flexible membranes and vital DNA repair. Environ Microbiol 17(7):2319–2335CrossRefPubMedGoogle Scholar
  27. Papa R, Glagla S, Danchin A et al (2006) Proteomic identification of a two-component regulatory system in Pseudoalteromonas haloplanktis TAC125. Extremophiles 10(6):483–491CrossRefPubMedGoogle Scholar
  28. Papa R, Rippa V, Sannia G et al (2007) An effective cold inducible expression system developed in Pseudoalteromonas haloplanktis TAC125. J Biotechnol 127(2):199–210CrossRefPubMedGoogle Scholar
  29. Parrilli E, De Vizio D, Cirulli C et al (2008a) Development of an improved Pseudoalteromonas haloplanktis TAC125 strain for recombinant protein secretion at low temperature. Microb Cell Fact 7:2CrossRefPubMedPubMedCentralGoogle Scholar
  30. Parrilli E, Duilio A, Tutino ML (2008b) Heterologous protein expression in psychrophilic hosts. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Berlin Heidelberg, Springer, pp 365–379Google Scholar
  31. Parrilli E, Giuliani M, Giordano D (2010) The role of a 2-on-2 haemoglobin in oxidative and nitrosative stress resistance of Antarctic Pseudoalteromonas haloplanktis TAC125. Biochimie 92(8):1003–1009CrossRefPubMedGoogle Scholar
  32. Rippa V, Papa R, Giuliani M et al (2012) Regulated recombinant protein production in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Methods Mol Biol 824:203–218CrossRefPubMedGoogle Scholar
  33. Sannino F, Giuliani M, Salvatore U et al (2016) A novel synthetic medium and expression system for subzero growth and recombinant protein production in Pseudoalteromonas haloplanktis TAC125. Appl Microbiol Biotechnol. doi: 10.1007/s00253-016-7942-5 PubMedGoogle Scholar
  34. Singh R, Mailloux RJ, Puiseux-Dao S, Appanna VD (2007) Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens. Bacteriology 189(18):6665–6675CrossRefGoogle Scholar
  35. Tascon RI, Rodriguez-Ferri EF, Gutierrez-Martin CB et al (1993) Transposon mutagenesis in Actinobacillus pleuropneumoniae with a Tn10 derivative. J Bacteriol 175:5717–5722CrossRefPubMedPubMedCentralGoogle Scholar
  36. Tutino ML, Duilio A, Parrilli E et al (2001) A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature. Extremophiles 5:257–264CrossRefPubMedGoogle Scholar
  37. Unzueta U, Vázquez F, Accardi G et al (2015) Strategies for the production of difficult-to-express full-length eukaryotic proteins using microbial cell factories: production of human alpha-galactosidase A. Appl Microbiol Biotechnol 99(14):5863–5874CrossRefPubMedGoogle Scholar
  38. Vigentini I, Merico A, Tutino ML, Compagno C, Marino G (2006) Optimization of recombinant human nerve growth factor production in the psychrophilic Pseudoalteromonas haloplanktis. J Biotechnol 127(1):141–150CrossRefPubMedGoogle Scholar
  39. Wilmes B, Hartung A, Lalk M et al (2010) Fed-batch process for the psychrotolerant marine bacterium Pseudoalteromonas haloplanktis. Microb Cell Fact 21:9–72Google Scholar
  40. Yang X-W, Jian H-H, Wang F-P et al (2015) pSW2, a novel low-temperature inducible gene expression vector based on a filamentous phage of the deep-sea bacterium Shewanella piezotolerans WP3. Appl Environ Microbiol 81:5519–5526CrossRefPubMedPubMedCentralGoogle Scholar
  41. Yu Z-C, Tang B-L, al ZD-L (2015) Development of a cold-adapted Pseudoalteromonas expression system for the Pseudoalteromonas proteins intractable for the Escherichia coli system. PLoS One 10(9):e0137384CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Chemical SciencesUniversity of Naples Federico IINaplesItaly

Personalised recommendations