Advertisement

Biotechnological Improvements of Cold-Adapted Enzymes: Commercialization via an Integrated Approach

  • Khawar Sohail SiddiquiEmail author
  • Ahsan Mushir Shemsi
  • Gea Guerriero
  • Tahria Najnin
  • Taha
  • Haluk Ertan
Chapter

Abstract

Cold-adapted (psychrophilic) enzymes have intrinsically high activities at the expense of low stabilities due to their flexible structures. Their higher thermolability limits their applications under numerous industrial conditions that require the process to be carried out at higher temperatures for efficient catalysis. Therefore, for effective utilization, cold-adapted enzymes need to be improved in such a way that enhances their stability with an increase or retention of their activity. This chapter discusses the thermodynamic aspects of improvement of catalytic properties and presents a unified strategy that aims at simultaneously improving the activity and stability of cold-adapted enzymes by employing not a single but a combination of approaches that include genetic and chemical modifications, immobilization, nonaqueous solvents, and additives. This concept aims to take cold-adapted enzymes a step further from current potential to cost-effective tangible commercial applications.

References

  1. Abraham RE, Verma ML, Barrow CJ, Puri M (2014) Suitability of magnetic nanoparticle immobilized cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Bitechnol Biofuels 11(7):90Google Scholar
  2. Afzal AJ, Ali S, Latif F, Rajoka MI, Siddiqui KS (2005) Innovative kinetic and thermodynamic analysis of a purified superactive xylanase from Scopulariopsis sp. Appl Biochem Biotechnol 120:51–70PubMedCrossRefGoogle Scholar
  3. Afzal AJ, Bokhari SA, Siddiqui KS (2007) Kinetic and thermodynamic study of a chemically modified highly active xylanase from Scopulariopsis sp: existence of an essential amino group. Appl Biochem Biotechnol 141:273–297PubMedCrossRefGoogle Scholar
  4. Akcapinar GB, Venturini A, Martelli PL, Casadio R, Sezerman UO (2015) Modulating the thermostability of endoglucanase I from Trichoderma reesei using computational approaches. Protein Eng Des Sel 28:127–135CrossRefGoogle Scholar
  5. Al-Khudary R, Venkatachalam R, Katzer M, Elleuche S, Antranikian G (2010) A cold-adapted esterase of a novel marine isolate, Pseudoalteromonas arctica: gene cloning, enzyme purification and characterization. Extremophiles 14:273–285PubMedCrossRefGoogle Scholar
  6. Anbar M, Bayer EA (2012) Chapter 14: Approaches for improving thermostability characteristics in cellulases. In: Gilbert HJ (ed) Methods in enzymology. Academic, London, pp 261–271Google Scholar
  7. Asghari SM, Pazhang M, Ehtesham S, Karbalaei-Heidari HR, Taghdir M, Sadeghizadeh M, Naderi-Manesh H, Khajeh K (2010) Remarkable improvements of a neutral protease activity and stability share the same structural origins. Protein Eng Des Sel 23:599–606PubMedCrossRefGoogle Scholar
  8. Bae E, Bannen RM, Phillips GN Jr (2008) Bioinformatic method for protein thermal stabilization by structural entropy optimization. Proc Natl Acad Sci USA 105:9594–9597PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bernal JM, Lozano P, García-Verdugo E et al (2012) Supercritical synthesis of biodiesel. Molecules 17:8696–8719PubMedCrossRefGoogle Scholar
  10. Bhattacharyya T, Samaddar S, Dasgupta AK (2013) Reusable glucose sensing using carbon nanotube-based self-assembly. Nanoscale 5:9231–9237PubMedCrossRefGoogle Scholar
  11. Bruździak P, Panuszko A, Stangret J (2013) Influence of osmolytes on protein and water structure: a step to understanding the mechanism of protein stabilization. J Phys Chem B 117:11502–11508PubMedCrossRefGoogle Scholar
  12. Bund RK, Singhal RS (2002) An alkali stable cellulase by chemical modification using maleic anhydride. Carbohydr Polym 47:137–141CrossRefGoogle Scholar
  13. Campbell E, Chuang S, Banta S (2013) Modular exchange of substrate-binding loops alters both substrate and cofactor specificity in a member of the aldo–keto reductase superfamily. Protein Eng Des Sel 26:181–186PubMedCrossRefGoogle Scholar
  14. Canchi DR, García AE (2013) Cosolvent effects on protein stability. Annu Rev Phys Chem 64:273–293PubMedCrossRefGoogle Scholar
  15. Cavicchioli R, Curmi PMG, Siddiqui KS, Thomas T (2006) Proteins from psychrophiles. In: Rainey FA, Oren A (eds) Extremophiles—methods in microbiology. Academic, London, pp 395–436Google Scholar
  16. Cavicchioli R, Charlton T, Ertan H, Omar SM, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. J Microbial Biotechnol 4:449–460CrossRefGoogle Scholar
  17. Chakraborty K, Mukhopadhyay A, Dutta N, Dasgupta AK (2015) Psychrophilic enzymes compositions and methods for making and using same. US patent 2015/0044731 A1Google Scholar
  18. Cheng YS, Chen CC, Huang JW et al (2015) Improving the catalytic performance of a GH11 xylanase by rational protein engineering. Appl Microbiol Biotechnol 99:9503–9510PubMedCrossRefGoogle Scholar
  19. Cho SS, Reddy G, Straub JE, Thirumalai D (2011) Entropic stabilization of proteins by TMAO. J Phys Chem B 115:13401–13407PubMedPubMedCentralCrossRefGoogle Scholar
  20. Collins T, D'Amico S, Georlette D et al (2006) A nondetergent sulfobetaine prevents protein aggregation in microcalorimetric studies. Anal Biochem 352:299–301PubMedCrossRefGoogle Scholar
  21. Costa SA, Tzanov T, Carneiro AF et al (2002) Studies of stabilization of native catalase using additives. Enzyme Microb Technol 30:387–391CrossRefGoogle Scholar
  22. Cruz-Izquierdo Á, Picó EA, López C, Serra JL, Llama MJ (2014) Magnetic cross-linked enzyme aggregates (mCLEAs) of Candida antarctica lipase: an efficient and stable biocatalyst for bio-diesel synthesis. PLoS One 9:e115202PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cui JD, Jia SR (2013) Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: current development and future challenges. Crit Rev Biotechnol 35:15–28PubMedCrossRefGoogle Scholar
  24. D’Amico S, Marx JC, Gerday C, Feller G (2003) Activity-stability relationships in extremophilic enzymes. J Biol Chem 278:7891–7896PubMedCrossRefGoogle Scholar
  25. Dasgupta AK, Bhattacharyya T, Mukhopadhyay A, Dutta N, Chakraborty K (2015) Enzyme stabilization by carbon nanotubes. US patent 2015/079656A1Google Scholar
  26. Davis BG (2003) Chemical modification of biocatalysts. Curr Opin Chem Biol 14:379–383Google Scholar
  27. De Diego T, Lozano P, Gmouh S, Vaultier M, Iborra JL (2005) Understanding structure-stability relationships of Candida antartica lipase B in ionic liquids. Biomacromolecules 6:1457–1464PubMedCrossRefGoogle Scholar
  28. Dunitz JD (1994) The entropic cost of bound water in crystals and biomolecules. Science 264:670PubMedCrossRefGoogle Scholar
  29. Ertan H, Siddiqui KS, Muenchhoff J, Charlton T, Cavicchioli R (2012) Kinetic and thermodynamic characterization of the functional properties of a hybrid versatile peroxidase using isothermal titration calorimetry: insight into manganese peroxidase activation and lignin peroxidase inhibition. Biochimie 94:1221–1231PubMedCrossRefGoogle Scholar
  30. Ertan H, Cassel C, Verma A et al (2015) A new broad specificity alkaline metalloprotease from a Pseudomonas sp. Isolated from refrigerated milk: role of calcium in improving enzyme productivity. J Mol Catal B: Enzym 113:1–8CrossRefGoogle Scholar
  31. Fang L, Chow KM, Hou S et al (2014) Rational design, preparation and characterization of a therapeutic enzyme mutant with improved stability and function for cocaine detoxification. ACS Chem Biol 9:1764–1772PubMedPubMedCentralCrossRefGoogle Scholar
  32. Feller G (2008) Enzyme function at low temperatures in psychrophiles. In: Siddiqui KS, Thomas T (eds) Protein adaptation in extremophiles. Nova Science, New York, pp 35–69Google Scholar
  33. Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica 2013:512–840CrossRefGoogle Scholar
  34. Fields PA, Somero GN (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. Proc Natl Acad Sci USA 95:11476–11481PubMedPubMedCentralCrossRefGoogle Scholar
  35. Forde J, Vakurov A, Gibson TD et al (2010) Chemical modification and immobilisation of lipase B from Candida antarctica onto mesoporous silicates. J Mol Catal B: Enzym 66:203–209CrossRefGoogle Scholar
  36. Fox D (2015) Life at hell’s gate. Sci Am 313:34–34CrossRefGoogle Scholar
  37. Fresco-Taboada A, Serra I, Fernández-Lucas J et al (2014) Nucleoside 2′-deoxyribosyltransferase from psychrophilic bacterium Bacillus psychrosaccharolyticus-preparation of an immobilized biocatalyst for the enzymatic synthesis of therapeutic nucleosides. Molecules 19:11231–11249PubMedCrossRefGoogle Scholar
  38. Gladden JM, Park JI, Bergmann J et al (2014) Discovery and characterization of ionic liquid-tolerant thermophilic cellulases from a switchgrass-adapted microbial community. Biotechnol Biofuels 7:15PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gonzalez-Blasco G, Sanz-Aparicio J, Gonzalez B, Hermoso JA, Polaina J (2000) Directed evolution of beta-glucosidase A from Paenibacillus polymyxa to thermal resistance. J Biol Chem 275:13708–13712PubMedCrossRefGoogle Scholar
  40. Goomber S, Kumar A, Kaur J (2016) Disruption of N terminus long range non covalent interactions shifted temp. opt 25° C to cold: evolution of point mutant Bacillus lipase by error prone PCR. Gene 576:237–243PubMedCrossRefGoogle Scholar
  41. Gremos S, Kekos D, Kolisis F (2012) Supercritical carbon dioxide biocatalysis as a novel and green methodology for the enzymatic acylation of fibrous cellulose in one step. Bioresour Technol 115:96–101PubMedCrossRefGoogle Scholar
  42. Guerriero G, Sergeant K, Hausman JF (2014) Wood biosynthesis and typologies: a molecular rhapsody. Tree Physiol 34:839–855PubMedCrossRefGoogle Scholar
  43. Guerriero G, Hausman JF, Strauss J et al (2015) Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases. Plant Sci 234:180–193PubMedPubMedCentralCrossRefGoogle Scholar
  44. Guerriero G, Hausman JF, Strauss J, Ertan H, Siddiqui KS (2016) Lignocellulosic biomass: biosynthesis, degradation and industrial utilization. Eng Life Sci 16:1–16CrossRefGoogle Scholar
  45. Hayashi S, Akanuma S, Onuki W, Tokunaga C, Yamagishi A (2011) Substitutions of coenzyme-binding, nonpolar residues improve the low-temperature activity of thermophilic dehydrogenases. Biochemistry 50:8583–8593PubMedCrossRefGoogle Scholar
  46. He HL, Chen XL, Zhang XY, Sun CY, Zou BC, Zhang YZ (2009) Novel use for the osmolyte trimethylamine N-oxide: retaining the psychrophilic characters of cold-adapted protease deseasin MCP-01 and simultaneously improving its thermostability. Marine Biotechnol 11:710–716CrossRefGoogle Scholar
  47. Hecht M, Bromberg Y, Rost B (2015) Better prediction of functional effects for sequence variants. BMC Genomics. 2015;16 Suppl 8:S1Google Scholar
  48. Homaei AA, Sariri R, Vianello F, Stevanato R (2013) Enzyme immobilization: an update. J Chem Biol 6:185–205PubMedPubMedCentralCrossRefGoogle Scholar
  49. Huggins DJ (2015) Quantifying the entropy of binding for water molecules in protein cavities by computing correlations. Biophys J 108:928–936PubMedPubMedCentralCrossRefGoogle Scholar
  50. Isaksen GV, Aqvist J, Brandsdal BO (2016) Enzyme surface rigidity tunes the temperature dependence of catalytic rates. Proc Natl Acad Sci USA 113:7822–7827PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jaeger V, Burney P, Pfaendtner J (2015) Comparison of three ionic liquid-tolerant cellulases by molecular dynamics. Biophys J 108:880–892PubMedPubMedCentralCrossRefGoogle Scholar
  52. Jayawardena MB, Yee LH, Poljak A, Cavicchioli R, Kjelleberg SJ, Siddiqui KS (2017) Enhancement of lipase stability and productivity through chemical modification and its application to latex-based polymer emulsions. Process Biochem. doi: 10.1016/j.procbio.2017.03.014 Google Scholar
  53. Jia R, Hu Y, Liu L, Jiang L, Huang H (2013) Chemical modification for improving activity and stability of lipase B from Candida antarctica with imidazolium-functional ionic liquids. Org Biomol Chem 11:7192–7198PubMedCrossRefGoogle Scholar
  54. Karan R, Capes MD, DasSarma S (2012) Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biol 8:1Google Scholar
  55. Kasana RC, Gulati A (2011) Cellulases from psychrophilic microorganisms: a review. J Basic Microbiol 51:572–579PubMedCrossRefGoogle Scholar
  56. Kaushik JK, Bhat R (2003) Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J Biol Chem 278:26458–26465PubMedCrossRefGoogle Scholar
  57. Kim HS, Ha SH, Sethaphong L, Koo YM, Yingling YG (2014) The relationship between enhanced enzyme activity and structural dynamics in ionic liquids: a combined computational and experimental study. Phys Chem Chem Phys 16:2944–2953PubMedCrossRefGoogle Scholar
  58. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246PubMedCrossRefGoogle Scholar
  59. Kobayashi M, Takada Y (2014) Effects of the combined substitutions of amino acid residues on thermal properties of cold-adapted monomeric isocitrate dehydrogenases from psychrophilic bacteria. Extremophiles 18:755–762PubMedCrossRefGoogle Scholar
  60. Kotting C, Kallenbach A, Suveyzdis Y et al (2008) The GAP arginine finger movement into the catalytic site of Ras increases the activation entropy. Proc Natl Acad Sci USA 105:6260–6265PubMedPubMedCentralCrossRefGoogle Scholar
  61. Koutsioulis D, Wang E, Tzanodaskalaki M et al (2008) Directed evolution on the cold adapted properties of TAB5 alkaline phosphatase. Protein Eng Des Sel 21:319–327PubMedCrossRefGoogle Scholar
  62. Li Y, Wang XY, Zhang RZ et al (2014) Molecular imprinting and immobilization of cellulase onto magnetic Fe3O4@SiO2 nanoparticles. J Nanosci Nanotechnol 14:2931–2936PubMedCrossRefGoogle Scholar
  63. Lonhienne T, Gerday C, Feller G (2000) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta 1543:1–10PubMedCrossRefGoogle Scholar
  64. Lozano P, de Diego T, Carrie D, Vaultier M, Iborra JL (2001) Overstabilization of Candida antarctica lipase B by ionic liquids in ester synthesis. Biotechnol Lett 23:1529–1533CrossRefGoogle Scholar
  65. Lozano P, Bernal B, Bernal JM, Pucheault M, Vaultier M (2011) Stabilizing immobilized cellulase by ionic liquids for saccharification of cellulose solutions in 1-butyl-3-methylimidazolium chloride. Green Chem 13:1406–1410CrossRefGoogle Scholar
  66. Lozano P, García-Verdugo E, Bernal JM et al (2012) Immobilized lipase onto structured supports containing covalently attached ionic liquids for continuous synthesis of biodiesel in scCO2. ChemSusChem 5:790–798PubMedCrossRefGoogle Scholar
  67. Lozano P, Bernal JM, Sanchez-Gomez G, Lopez-Lopez G, Vaultier M (2013) How to produce biodiesel easily using a green biocatalytic approach in sponge-like ionic liquids. Energ Environ Sci 6:1328–1338CrossRefGoogle Scholar
  68. Lozano P, Bernal JM, Nieto S, Gomez C, Garcia-Verdugo E, Luis SV (2015) Active biopolymers in green non-conventional media: a sustainable tool for developing clean chemical processes. Chem Commun 51:17361–17374CrossRefGoogle Scholar
  69. Makowski K, Białkowska A, Szczesna-Antczak M et al (2007) Immobilized preparation of cold-adapted and halotolerant Antarctic beta-galactosidase as a highly stable catalyst in lactose hydrolysis. FEMS Microbiol Ecol 59:535–542PubMedCrossRefGoogle Scholar
  70. Miyazaki K, Wintrode PL, Grayling RA, Rubingh DN, Arnold FH (2000) Directed evolution study of temperature adaptation in a psychrophilic enzyme. J Mol Biol 297:1015–1026PubMedCrossRefGoogle Scholar
  71. Monhemi H, Housaindokht MR (2016) Chemical modification of biocatalyst for function in supercritical CO2: in silico redesign of stable lipase. J Supercrit Fluids 117:147–163CrossRefGoogle Scholar
  72. Mukhopadhyay A, Dasgupta AK, Chakrabarti K (2015) Enhanced functionality and stabilization of a cold active laccase using nanotechnology based activation-immobilization. Bioresour Technol 179:573–584PubMedCrossRefGoogle Scholar
  73. Narasimhan D, Nance MR, Gao D et al (2010) Structural analysis of thermostabilizing mutations of cocaine esterase. Protein Eng Des Sel 23:537–547PubMedPubMedCentralCrossRefGoogle Scholar
  74. Nguyen LT, Lau YS, Yang KL (2016) Entrapment of cross-linked cellulase colloids in alginate beads for hydrolysis of cellulose. Colloids Surf B Biointerfaces 145:862–869CrossRefGoogle Scholar
  75. Nordwald EM, Brunecky R, Himmel ME et al (2014) Charge engineering of cellulases improves ionic liquid tolerance and reduces lignin inhibition. Biotechnol Bioeng 111:1541–1549PubMedCrossRefGoogle Scholar
  76. Ottosson J, Rotticci-Mulder JC, Rotticci D, Hult K (2001) Rational design of enantioselective enzymes requires considerations of entropy. Protein Sci 10:1769–1774PubMedPubMedCentralCrossRefGoogle Scholar
  77. Ottosson J, Fransson L, Hult K (2002) Substrate entropy in enzyme enantioselectivity: an experimental and molecular modeling study of a lipase. Protein Sci 11:1462–1471PubMedPubMedCentralCrossRefGoogle Scholar
  78. Owusu Apenten RK (1999) Low temperature organic phase biocatalysis using cold adapted enzymes. In: Margesin R, Schinner F (eds) Biotechnological applications of cold-adapted organisms. Springer, Berlin, pp 35–48CrossRefGoogle Scholar
  79. Pan J, Chen XL, Shun CY, He HL, Zhang YZ (2005) Stabilization of cold-adapted protease MCP-01 promoted by trehalose: prevention of the autolysis. Protein Pept Lett 12:375–378PubMedCrossRefGoogle Scholar
  80. Park S, Kazlauskas RJ (2003) Biocatalysis in ionic liquids—advantages beyond green technology. Curr Opin Biotechnol 14:432–437PubMedCrossRefGoogle Scholar
  81. Pfleger C, Rathi PC, Klein DL, Radestock S, Gohlke H (2013) Constraint Network Analysis (CNA): a Python software package for efficiently linking biomacromolecular structure, flexibility, (thermo-) stability and function. J Chem Inf Model 53:1007–1015PubMedCrossRefGoogle Scholar
  82. Pucci F, Bourgeas R, Rooman M (2016) Predicting protein thermal stability changes upon point mutations using statistical potentials: introducing HoTMuSiC. Sci Rep 6:23257PubMedPubMedCentralCrossRefGoogle Scholar
  83. Rahman MA, Culsum U, Kumar A, Gao H, Hu N (2016) Immobilization of a novel cold active esterase onto Fe3O4∼ cellulose nano-composite enhances catalytic properties. Int J Biol Macromol 87:488–497PubMedCrossRefGoogle Scholar
  84. Rashid MH, Siddiqui KS (1998) Carboxy-group modification: high-temperature activation of charge-neutralized and charge-reversed beta-glucosidases from Aspergillus niger. Biotechnol Appl Biochem 27:231–237PubMedGoogle Scholar
  85. Rich J, Dordick J (2001) Imprinting Enzymes for Use in Organic Media. In: Vulfson E, Halling P, Holland H (eds) Enzymes in nonaqueous dolvents. Humana Press, New York, pp 13–17CrossRefGoogle Scholar
  86. Sangeetha K, Abraham TE (2008) Preparation and characterization of cross-linked enzyme aggregates (CLEA) of Subtilisin for controlled release applications. Int J Biol Macromol 43:314–319PubMedCrossRefGoogle Scholar
  87. Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP (2016) Discovery, molecular mechanisms and industrial applications of cold-active enzymes. Front Microbiol 7:1408PubMedPubMedCentralGoogle Scholar
  88. Sarmiento F, Peralta R, Blamey JM (2015) Cold and hot extremozymes: industrial relevance and current trends. Front Bioeng Biotechnol 3:148PubMedPubMedCentralCrossRefGoogle Scholar
  89. Sehata S, Nakagawa Y, Genjima R, Koumoto K (2016) Quick activation/stabilization of a α-glucosidase-catalyzed hydrolysis reaction by addition of a betaine-type metabolite analogue. Chem Lett. doi: 10.1246/cl.160567 Google Scholar
  90. Semba Y, Ishida M, Yokobori S, Yamagishi A (2015) Ancestral amino acid substitution improves the thermal stability of recombinant lignin-peroxidase from white-rot fungi, Phanerochaete chrysosporium strain UAMH 3641. Protein Eng Des Sel 28:221–230PubMedCrossRefGoogle Scholar
  91. Sen S, Puskas JE (2015) Green polymer chemistry: enzyme catalysis for polymer functionalization. Molecules 20:9358–9379PubMedCrossRefGoogle Scholar
  92. Senyay-Oncel D, Yesil-Celiktas O (2015) Characterization, immobilization, and activity enhancement of cellulase treated with supercritical CO2. Cellulose 22:3619–3631CrossRefGoogle Scholar
  93. Shiraki K, Tomita S, Inoue N (2015) Small amine molecules: solvent design toward facile improvement of protein stability against aggregation and inactivation. Curr Pharm Biotechnol 17:116–125PubMedCrossRefGoogle Scholar
  94. Siddiqui KS (2015) Some like it hot, some like it cold: temperature dependent biotechnological applications and improvements in extremophilic enzymes. Biotechnol Adv 33:1912–1922PubMedCrossRefGoogle Scholar
  95. Siddiqui KS (2017) Defying activity-stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability. Crit Rev Biotechnol. doi: 10.3109/07388551.2016.1144045 PubMedGoogle Scholar
  96. Siddiqui KS, Cavicchioli R (2005) Improved thermal stability and activity in the cold-adapted lipase B from Candida antarctica following chemical modification with oxidized polysaccharides. Extremophiles 9:471–476PubMedCrossRefGoogle Scholar
  97. Siddiqui KS, Cavicchioli R (2006) Cold adapted enzymes. Annu Rev Biochem 75:403–433PubMedCrossRefGoogle Scholar
  98. Siddiqui KS, Saqib AAN, Rashid MH, Rajoka MI (1997) Thermostabilization of carboxymethylcellulase from Aspergillus niger by carboxyl group modification. Biotechnol Lett 19:325–330CrossRefGoogle Scholar
  99. Siddiqui KS, Shemsi AM, Anwar MA, Rashid MH, Rajoka MI (1999) Partial and complete alteration of surface charges of carboxymethylcellulase by chemical modification: thermostabilization in water miscible organic solvent. Enzyme Microb Technol 24:599–608CrossRefGoogle Scholar
  100. Siddiqui KS, Poljak A, Cavicchioli R (2004) Improved activity and stability of alkaline phosphatases from psychrophilic and mesophilic organisms by chemically modifying aliphatic or amino groups using tetracarboxy-benzophenone derivatives. Cell Mol Biol 50:657–667PubMedGoogle Scholar
  101. Siddiqui KS, Feller G, D’Amico S, Gerday C, Giaquinto L, Cavicchioli R (2005) The active site is the least stable structure in the unfolding pathway of a multi-domain cold-adapted α-amylase. J Bacteriol 187:6197–6205PubMedPubMedCentralCrossRefGoogle Scholar
  102. Siddiqui KS, Poljak A, Guilhaus M et al (2006) Role of lysine versus arginine in enzyme cold-adaptation: modifying lysine to homo-arginine stabilizes the cold-adapted alpha-amylase from Pseudoalteramonas haloplanktis. Proteins 64:486–501PubMedCrossRefGoogle Scholar
  103. Siddiqui KS, Parkin DM, Curmi PM et al (2009) A novel approach for enhancing the catalytic efficiency of a protease at low temperature: reduction in substrate inhibition by chemical modification. Biotechnol Bioeng 103:676–686PubMedCrossRefGoogle Scholar
  104. Siddiqui KS, Poljak A, De Francisci D et al (2010) A chemically modified alpha-amylase with a molten-globule state has entropically driven enhanced thermal stability. Protein Eng Des Sel 23:769–780PubMedCrossRefGoogle Scholar
  105. Siddiqui KS, Williams TJ, Wilkins D et al (2013) Psychrophiles. Annu Rev Earth Planet Sci 41:87–115CrossRefGoogle Scholar
  106. Siddiqui KS, Ertan H, Charlton T et al (2014) Versatile peroxidase degradation of humic substances: use of isothermal titration calorimetry to assess kinetics, and applications to industrial wastes. J Biotechnol 178:1–11PubMedCrossRefGoogle Scholar
  107. Sigurdardóttir AG, Arnórsdóttir J, Thorbjarnardóttir SH, Eggertsson G, Suhre K, Kristjánsson MM (2009) Characteristics of mutants designed to incorporate a new ion pair into the structure of a cold adapted subtilisin-like serine proteinase. Biochim Biophys Acta 1794:512–518PubMedCrossRefGoogle Scholar
  108. Socha AM, Parthasarathi R, Shi J et al (2014) Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. Proc Natl Acad Sci USA 111:3587–3595CrossRefGoogle Scholar
  109. Sonan GK, Receveur-Brechot V, Duez C et al (2007) The linker region plays a key role in the adaptation to cold of the cellulase from an Antarctic bacterium. Biochem J 407:293–302PubMedPubMedCentralCrossRefGoogle Scholar
  110. Sriariyanun M, Tantayotai P, Yasurin P et al (2016) Production, purification and characterization of an ionic liquid tolerant cellulase from Bacillus sp. isolated from rice paddy field soil. Electron J Biotechnol 19:23–28CrossRefGoogle Scholar
  111. Struvay C, Feller G (2012) Optimization to low temperature activity in psychrophilic enzymes. Int J Mol Sci 13:11643–11665PubMedPubMedCentralCrossRefGoogle Scholar
  112. Tay T, Köse E, Keçili R, Say R (2016) Design and preparation of nano-lignin peroxidase (nanoLiP) by protein block copolymerization approach. Polymer 8:223CrossRefGoogle Scholar
  113. Tian J, Wang P, Huang L, Chu X, Wu N, Fan Y (2013) Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method. Appl Microbiol Biotechnol 97:2997–3006PubMedCrossRefGoogle Scholar
  114. Truongvan N, Jang SH, Lee C (2016) Flexibility and stability trade-off in active site of cold-adapted Pseudomonas mandelii esterase EstK. Biochemistry 55:3542–3549PubMedCrossRefGoogle Scholar
  115. Ungurean M, Paul C, Peter F (2013) Cellulase immobilized by sol-gel entrapment for efficient hydrolysis of cellulose. Bioprocess Biosyst Eng 36:1327–1338PubMedCrossRefGoogle Scholar
  116. Wang G, Luo H, Wang Y et al (2011) A novel cold-active xylanase gene from the environmental DNA of goat rumen contents: direct cloning, expression and enzyme characterization. Bioresour Technol 102:3330–3336PubMedCrossRefGoogle Scholar
  117. Wang P, Woodward CA, Kaufman EN (1999) Poly (ethylene glycol)-modified ligninase enhances pentachlorophenol biodegradation in water–solvent mixtures. Biotechnol Bioeng 64:290–297PubMedCrossRefGoogle Scholar
  118. Wang S, Yang Y, Yang R et al (2014) Cloning and characterization of a cold-adapted endo-1,5-α-L-arabinanase from Paenibacillus polymyxa and rational design for acidic applicability. J Agric Food Chem 62:8460–8469PubMedCrossRefGoogle Scholar
  119. Wang YB, Gao C, Zheng Z et al (2015) Immobilization of cold-active cellulase from Antarctic bacterium and its use for kelp cellulose ethanol fermentation. BioResources 10:1757–1772Google Scholar
  120. Watanabe S, Yasutake Y, Tanaka I, Takada Y (2005) Elucidation of stability determinants of cold-adapted monomeric isocitrate dehydrogenase from a psychrophilic bacterium, Colwellia maris, by construction of chimeric enzymes. Microbiology 151:1083–1094PubMedCrossRefGoogle Scholar
  121. Wijma HJ, Floor RJ, Janssen DB (2013) Structure and sequence analysis inspired engineering of proteins for enhanced thermostability. Curr Opin Struct Biol 23:588–594PubMedCrossRefGoogle Scholar
  122. Wintrode PL, Miyazaki K, Arnold FH (2001) Patterns of adaptation in a laboratory evolved thermophilic enzyme. Biochim Biophys Acta (BBA) Protein Struct Mol Enzymol 1549:1–8CrossRefGoogle Scholar
  123. Wolfenden R, Snider MJ (2001) The depth of chemical time and the power of enzymes as catalysts. Acc Chem Res 34:938–945PubMedCrossRefGoogle Scholar
  124. Xu H, Shen D, XQ W, Liu ZW, Yang QH (2014) Characterization of a mutant glucose isomerase from Thermoanaerobacterium saccharolyticum. J Ind Microbiol Biotechnol 41:1581–1589PubMedCrossRefGoogle Scholar
  125. Yancey PH, Siebenaller JF (2015) Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. J Exp Biol 218:1880–1896PubMedCrossRefGoogle Scholar
  126. Yang H, Li J, Shin HD, Du G, Liu L, Chen J (2014) Molecular engineering of industrial enzymes: recent advances and future prospects. Appl Microbiol Biotechnol 98:23–29PubMedCrossRefGoogle Scholar
  127. Yoshida S, Watanabe T, Honda Y, Kuwahara M (1996) Reaction of chemically modified lignin peroxidase of Phanerochaete chrysosporium in water-miscible organic solvents. Biosci Biotechnol Biochem 60:1805–1809CrossRefGoogle Scholar
  128. Yu H, Huang H (2014) Engineering proteins for thermostability through rigidifying flexible sites. Biotechnol Adv 32:308–315PubMedCrossRefGoogle Scholar
  129. Zhang DH, Xu HX, Chen N, Che WC (2016) The application of ionic liquids in enzyme immobilization and enzyme modification. Austin J Biotechnol Bioeng 3:1060Google Scholar
  130. Zhang N, Suen WC, Windsor W, Xiao L, Madison V, Zaks A (2003) Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution. Protein Eng 16:599–605PubMedCrossRefGoogle Scholar
  131. Zhao H (2010) Methods for stabilizing and activating enzymes in ionic liquids—a review. J Chem Technol Biotechnol 85:891–907CrossRefGoogle Scholar
  132. Zhao H, Baker GA, Holmes S (2011) New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel. Org Biomol Chem 9:1908–1916PubMedPubMedCentralCrossRefGoogle Scholar
  133. Zheng H, Liu Y, Sun M et al (2014) Improvement of alkali stability and thermostability of Paenibacillus campinasensis family-11 xylanase by directed evolution and site-directed mutagenesis. J Ind Microbiol Biotechnol 41:153–162PubMedCrossRefGoogle Scholar
  134. Zhong CQ, Song S, Fang N (2009) Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesis. Biotechnol Bioeng 104:862–870PubMedCrossRefGoogle Scholar
  135. Zhu X, He B, Zhao C et al (2016) Net-immobilization of β-glucosidase on nonwoven fabrics to lower the cost of “cellulosic ethanol” and increase cellulose conversions. Sci Rep 6:23437PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Khawar Sohail Siddiqui
    • 1
    Email author
  • Ahsan Mushir Shemsi
    • 2
  • Gea Guerriero
    • 3
  • Tahria Najnin
    • 4
  • Taha
    • 5
  • Haluk Ertan
    • 5
    • 6
  1. 1.Life Sciences DepartmentKing Fahd University of Petroleum and Minerals (KFUPM)DhahranSaudi Arabia
  2. 2.Center for Environment and Water, Research InstituteKing Fahd University of Petroleum and Minerals (KFUPM)DhahranSaudi Arabia
  3. 3.Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST)Esch/AlzetteLuxembourg
  4. 4.Institute for Glycomics, Building G26Griffith University (Gold Coast Campus)SouthportAustralia
  5. 5.School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydneyAustralia
  6. 6.Department of Molecular Biology and GeneticsIstanbul UniversityVezneciler, IstanbulTurkey

Personalised recommendations