Advertisement

From Transcriptomes to Metatranscriptomes: Cold Adaptation and Active Metabolisms of Psychrophiles from Cold Environments

  • Isabelle Raymond-Bouchard
  • Lyle G. WhyteEmail author
Chapter

Abstract

Transcriptomic and metatranscriptomic studies have yielded important insights into the mechanisms and metabolisms that allow psychrophiles to remain active in cold environments. Psychrophiles undergo numerous changes to their transcriptional profiles at colder temperatures and change the regulation of genes involved in most cellular processes, including primary metabolism and biosynthetic pathways, cell wall and peptidoglycan biosynthesis, lipid biosynthesis and cell membrane composition, translation/transcription/replication processes, protein turnover and chaperone functions, and stress responses. Increases in the expression of cold shock proteins, RNA/DNA helicases, protein chaperones, osmoprotectants, and proteins involved in the oxidative stress response are common features of cold adaptation in psychrophiles, as are changes to the cell membrane to increase fluidity and thickening of the cell wall. Metatranscriptome studies from permafrost and marine environments have begun to lay the groundwork for our understanding of the active metabolisms in these ecosystems and their potential impact on greater global processes such as biogeochemical cycles and greenhouse gas emissions. Community-specific microbial interactions, changes in temperature, degree of thaw, and nutrient, water, and organic matter availability, are all important drivers and regulators of microbial activity and metabolism, and changes in any of these factors can have significant impacts on microbial community function.

References

  1. Aliyu H, De Maayer P, Cowan D (2016) The genome of the Antarctic polyextremophile Nesterenkonia sp. AN1 reveals adaptive strategies for survival under multiple stress conditions. FEMS Microbiol Ecol 92:fiw032. doi: 10.1093/femsec/fiw032 CrossRefPubMedGoogle Scholar
  2. An M, Mou S, Zhang X et al (2013) Temperature regulates fatty acid desaturases at a transcriptional level and modulates the fatty acid profile in the Antarctic microalga Chlamydomonas sp. ICE-L. Bioresour Technol 134:151–157. doi: 10.1016/j.biortech.2013.01.142 CrossRefPubMedGoogle Scholar
  3. Bakermans C, Bergholz PW, Rodrigues DF et al (2012) Genomic and expression analyses of cold-adapted microorganisms. In: Miller RV, Whyte LG (eds) Polar microbiology: life in a deep freeze. ASM Press, Washington, DC, pp 126–155CrossRefGoogle Scholar
  4. Bergholz PW, Bakermans C, Tiedje JM (2009) Psychrobacter arcticus 273-4 uses resource efficiency and molecular motion adaptations for subzero temperature growth. J Bacteriol 191:2340–2352. doi: 10.1128/JB.01377-08 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bertrand EM, McCrow JP, Moustafa A et al (2015) Phytoplankton-bacterial interactions mediate micronutrient colimitation at the coastal Antarctic sea ice edge. Proc Natl Acad Sci U S A 112:9938–9943. doi: 10.1073/pnas.1501615112 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Blazewicz SJ, Barnard RL, Daly RA, Firestone MK (2013) Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J 7:2061–2068. doi: 10.1038/ismej.2013.102 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Budde I, Steil L, Scharf C et al (2006) Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal. Microbiology 152:831–853. doi: 10.1099/mic.0.28530-0 CrossRefPubMedGoogle Scholar
  8. Buelow HN, Kooser AS, Van Horn DJ et al (2016) Microbial community responses to increased water and organic matter in the arid soils of the McMurdo Dry Valleys, Antarctica. Front Microbiol 7:1040. doi: 10.3389/fmicb.2016.01040 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cameron KA, Stibal M, Zarsky JD et al (2016) Supraglacial bacterial community structures vary across the Greenland ice sheet. FEMS Microbiol Ecol 92:fiv164CrossRefPubMedGoogle Scholar
  10. Campanaro S, Williams TJ, Burg DW et al (2011) Temperature-dependent global gene expression in the Antarctic archaeon Methanococcoides burtonii. Environ Microbiol 13:2018–2038. doi: 10.1111/j.1462-2920.2010.02367.x CrossRefPubMedGoogle Scholar
  11. Chattopadhyay MK, Raghu G, Sharma YVRK et al (2011) Increase in oxidative stress at low temperature in an antarctic bacterium. Curr Microbiol 62:544–546. doi: 10.1007/s00284-010-9742-y CrossRefPubMedGoogle Scholar
  12. Chen Z, Yu H, Li L et al (2012) The genome and transcriptome of a newly described psychrophilic archaeon, Methanolobus psychrophilus R15, reveal its cold adaptive characteristics. Environ Microbiol Rep 4:633–641. doi: 10.1111/j.1758-2229.2012.00389.x PubMedGoogle Scholar
  13. Chong G-L, Chu W-L, Othman RY, Phang S-M (2011) Differential gene expression of an Antarctic Chlorella in response to temperature stress. Polar Biol 34:637–645. doi: 10.1007/s00300-010-0918-5 CrossRefGoogle Scholar
  14. Coolen MJL, Orsi WD (2015) The transcriptional response of microbial communities in thawing Alaskan permafrost soils. Front Microbiol 6:197. doi: 10.3389/fmicb.2015.00197 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Crevecoeur S, Vincent WF, Comte J, Lovejoy C (2015) Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems. Front Microbiol 6:192. doi: 10.3389/fmicb.2015.00192 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dall’Agnol HPMB, Baraúna RA, de Sá PHCG et al (2014) Omics profiles used to evaluate the gene expression of Exiguobacterium antarcticum B7 during cold adaptation. BMC Genomics 15:986. doi: 10.1186/1471-2164-15-986 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Davidson EA, Janssens IA, Marks D et al (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173. doi: 10.1038/nature04514 CrossRefPubMedGoogle Scholar
  18. Davies PL, Baardsnes J, Kuiper MJ, Walker VK (2002) Structure and function of antifreeze proteins. Philos Trans R Soc Lond B Biol Sci 357:927–935. doi: 10.1098/rstb.2002.1081 CrossRefPubMedPubMedCentralGoogle Scholar
  19. De Maayer P, Anderson D, Cary C, Cowan D (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15:508–517. doi: 10.1002/embr.201338170 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Doyle S, Dieser M, Broemsen E, Christner B (2012) General characteristics of cold-adapted microorganisms. In: Miller RV, Whyte LG (eds) Polar microbiology: life in a deep freeze. ASM Press, Washington, DC, pp 103–125CrossRefGoogle Scholar
  21. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240. doi: 10.1126/science.281.5374.237 CrossRefPubMedGoogle Scholar
  22. Gao H, Yang ZK, Wu L et al (2006) Global transcriptome analysis of the cold shock response of Shewanella oneidensis MR-1 and mutational analysis of its classical cold shock proteins. J Bacteriol 188:4560–4569. doi: 10.1128/JB.01908-05 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hall EK, Neuhauser C, Cotner JB (2008) Toward a mechanistic understanding of how natural bacterial communities respond to changes in temperature in aquatic ecosystems. ISME J 2:471–481CrossRefPubMedGoogle Scholar
  24. Hamilton TL, Peters JW, Skidmore ML, Boyd ES (2013) Molecular evidence for an active endogenous microbiome beneath glacial ice. ISME J 7:1402–1412. doi: 10.1038/ismej.2013.31 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hultman J, Waldrop MP, Mackelprang R et al (2015) Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521:208–212. doi: 10.1038/nature14238 CrossRefPubMedGoogle Scholar
  26. Hwang Y, Jung G, Jin E (2008) Transcriptome analysis of acclimatory responses to thermal stress in Antarctic algae. Biochem Biophys Res Commun 367:635–641. doi: 10.1016/j.bbrc.2007.12.176 CrossRefPubMedGoogle Scholar
  27. Jones DS, Flood BE, Bailey JV (2015) Metatranscriptomic analysis of diminutive Thiomargarita-like bacteria (“Candidatus Thiopilula” spp.) from abyssal cold seeps of the barbados accretionary prism. Appl Environ Microbiol 81:3142–3156. doi: 10.1128/AEM.00039-15 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kim S, Kim MJ, Jung MG et al (2013) De novo transcriptome analysis of an Arctic microalga, Chlamydomonas sp. Genes Genomics 35:215–223. doi: 10.1007/s13258-013-0085-5 CrossRefGoogle Scholar
  29. Koh HY, Park H, Lee JH et al (2017) Proteomic and transcriptomic investigations on cold-responsive properties of the psychrophilic Antarctic bacterium Psychrobacter sp. PAMC 21119 at subzero temperatures. Environ Microbiol 19:628–644. doi: 10.1111/1462-2920.13578 CrossRefPubMedGoogle Scholar
  30. Kvint K, Nachin L, Diez A, Nyström T (2003) The bacterial universal stress protein: function and regulation. Curr Opin Microbiol 6:140–145. doi: 10.1016/S1369-5274(03)00025-0 CrossRefPubMedGoogle Scholar
  31. La Terza A, Papa G, Miceli C, Luporini P (2001) Divergence between two Antarctic species of the ciliate Euplotes, E. focardii and E. nobilii, in the expression of heat-shock protein 70 genes. Mol Ecol 10:1061–1067. doi: 10.1046/j.1365-294X.2001.01242.x CrossRefPubMedGoogle Scholar
  32. Lamarche-Gagnon G, Comery R, Greer CW, Whyte LG (2014) Evidence of in situ microbial activity and sulphidogenesis in perennially sub-0°C and hypersaline sediments of a high Arctic permafrost spring. Extremophiles 19:1–15. doi: 10.1007/s00792-014-0703-4 CrossRefPubMedGoogle Scholar
  33. Lau MC, Stackhouse BT, Layton AC et al (2015) An active atmospheric methane sink in high Arctic mineral cryosols. ISME J 9:1880–1891. doi: 10.1038/ismej.2015.13 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lauro FM, Allen MA, Wilkins D et al (2011) Psychrophiles: genetics, genomics, evolution. In: Horikoshi K (ed) Extremophiles handbook. Springer, New York, NY, pp 1118–1130Google Scholar
  35. Lay C-Y, Mykytczuk NCS, Yergeau É et al (2013) Defining the functional potential and active community members of a sediment microbial community in a high-arctic hypersaline subzero spring. Appl Environ Microbiol 79:3637–3648. doi: 10.1128/AEM.00153-13 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Li H, Liu X, Wang Y et al (2009) Enhanced expression of antifreeze protein genes drives the development of freeze tolerance in an Antarctica isolate of Chlorella vulgaris. Prog Nat Sci 19:1059–1062. doi: 10.1016/j.pnsc.2008.10.012 CrossRefGoogle Scholar
  37. Liu C, Huang X (2015) Transcriptome-wide analysis of DEAD-box RNA helicase gene family in an Antarctic psychrophilic alga Chlamydomonas sp. ICE-L. Extremophiles 19:921–931. doi: 10.1007/s00792-015-0768-8 CrossRefPubMedGoogle Scholar
  38. Liu X, Wang Y, Gao H, Xu X (2011) Identification and characterization of genes encoding two novel LEA proteins in Antarctic and temperate strains of Chlorella vulgaris. Gene 482:51–58. doi: 10.1016/j.gene.2011.05.006 CrossRefPubMedGoogle Scholar
  39. Mackelprang R, Saleska SR, Jacobsen CS et al (2016) Permafrost meta-omics and climate change. Annu Rev Earth Planet Sci 44:439–462. doi: 10.1146/annurev-earth-060614-105126 CrossRefGoogle Scholar
  40. Mazzon RR, Lang EAS, Silva CAPT, Marques MV (2012) Cold shock genes CspA and CspB from caulobacter crescentus are post transcriptionally regulated and important for cold adaptation. J Bacteriol 194:6507–6517. doi: 10.1128/JB.01422-12 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mock T, Hoch N (2005) Long-term temperature acclimation of photosynthesis in steady-state cultures of the polar diatom Fragilariopsis cylindrus. Photosynth Res 85:307–317. doi: 10.1007/s11120-005-5668-9 CrossRefPubMedGoogle Scholar
  42. Mock T, Krell A, Valentin K et al (2005) Analysis of expressed sequence tags (ESTs) from the polar diatom Fragilariopsis cylindrus. J Phycol 42:78–85. doi: 10.1111/j.1529-8817.2005.00164.x CrossRefGoogle Scholar
  43. Mykytczuk NC, Foote SJ, Omelon CR et al (2013) Bacterial growth at -15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J 7:1211–1226. doi: 10.1038/ismej.2013.8 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Olefeldt D, Turetsky MR, Crill PM, Mcguire AD (2013) Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Glob Chang Biol 19:589–603. doi: 10.1111/gcb.12071 CrossRefPubMedGoogle Scholar
  45. Pearson GA, Lago-Leston A, Canovas F et al (2015) Metatranscriptomes reveal functional variation in diatom communities from the Antarctic Peninsula. ISME J 9:2275–2289. doi: 10.1038/ismej.2015.40 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rodrigues DF, Ivanova N, He Z et al (2008) Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach. BMC Genomics 9:547. doi: 10.1186/1471-2164-9-547 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Siddiqui KS, Williams TJ, Wilkins D et al (2013) Psychrophiles. Annu Rev Earth Planet Sci 41:87–115. doi: 10.1146/annurev-earth-040610-133514 CrossRefGoogle Scholar
  48. Thomas T, Kumar N, Cavicchioli R (2001) Effects of ribosomes and intracellular solutes on activities and stabilities of elongation factor 2 proteins from psychrotolerant and thermophilic methanogens. J Bacteriol 183:1974–1982. doi: 10.1128/JB.183.6.1974 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Toseland A, Daines SJ, Clark JR et al (2013) The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat Clim Chang 3:979–984. doi: 10.1038/nclimate1989 CrossRefGoogle Scholar
  50. Tribelli PM, Venero ECS, Ricardi MM et al (2015) Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the Antarctic bacterium Pseudomonas extremaustralis. PLoS One. doi: 10.1371/journal.pone.0145353 PubMedPubMedCentralGoogle Scholar
  51. Tripathy S, Sen R, Padhi SK et al (2014) Upregulation of transcripts for metabolism in diverse environments is a shared response associated with survival and adaptation of Klebsiella pneumoniae in response to temperature extremes. Funct Integr Genomics 14:591–601. doi: 10.1007/s10142-014-0382-3 CrossRefPubMedGoogle Scholar
  52. Tveit AT, Urich T, Frenzel P, Svenning MM (2015) Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming. Proc Natl Acad Sci U S A 112:E2507–E2516. doi: 10.1073/pnas.1420797112 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830. doi: 10.1242/jeb.01730 CrossRefPubMedGoogle Scholar
  54. Yergeau E, Kang S, He Z et al (2007) Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. ISME J 1:163–179. doi: 10.1038/ismej.2007.24 CrossRefPubMedGoogle Scholar
  55. Yergeau E, Arbour M, Brousseau R et al (2009) Microarray and real-time PCR analyses of the responses of high-arctic soil bacteria to hydrocarbon pollution and bioremediation treatments. Appl Environ Microbiol 75:6258–6267. doi: 10.1128/AEM.01029-09 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Natural Resource SciencesMcGill UniversitySte-Anne-de-BellevueCanada

Personalised recommendations