Advertisement

Metagenomic Analysis of Low-Temperature Environments

  • Habibu Aliyu
  • Pieter De Maayer
  • Sara Sjöling
  • Donald A. CowanEmail author
Chapter

Abstract

The Earth’s permanently cold biosphere is known to harbour abundant microbial biomass and represents a rich resource for the discovery of novel cold-adapted microorganisms, many of which form part of the ‘microbial dark matter’ which cannot be analysed using traditional culture-dependent approaches. The recent development of metagenomics and related multi-omics strategies has provided a means by which entire microbial communities can be studied directly, without the prerequisite of culturing. The advancement of the ‘omic’ methods is directly linked to recent progress in high-throughput sequencing, robust data processing capabilities and the application of cutting-edge analytical tools for high-throughput detection of biomolecules. The combined application of these tools and strategies has provided an unprecedented access to the structure and potential function of microbial communities in cold environments, providing increasingly comprehensive insights into the taxonomic richness and functional capacity of the indigenous microorganisms. Applications of ‘omic’ strategies have enhanced our understanding of psychrophilic adaptation mechanisms, revealing the versatility and adaptability of life in the ‘cryosphere’. In addition to the predicted roles of psychrophiles in biogeochemical cycling, recent multi-omic studies have further emphasised the importance of the ‘cryosphere’ in influencing global atmospheric conditions. Finally, metagenomic bioprospecting of cold environments has yielded a variety of novel bioactive molecules including novel ‘psychrozymes’, with a wide range of potential industrial and biotechnological applications. Here, we have provided an overview of recent developments in metagenomic technologies and their application in the study of the cold biosphere.

References

  1. Adrio JL, Demain AL (2014) Microbial enzymes: Tools for biotechnological processes. Biomolecules 4(1):117–139PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aguiar-Pulido V, Huang W, Suarez-Ulloa V, Cickovski T, Mathee K, Narasimhan G (2016) Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evol Bioinforma 12(Suppl 1):5–16Google Scholar
  3. Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH (2013) Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31(6):533–538PubMedCrossRefGoogle Scholar
  4. Allgaier M, Reddy A, Park JI, Ivanova N, D'haeseleer P, Lowry S, Sapra R, Hazen TC, Simmons BA, VanderGheynst JS (2010) Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community. PLoS One 5(1):e8812PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C (2014) Binning metagenomic contigs by coverage and composition. Nat Methods 11(11):1144–1146PubMedCrossRefGoogle Scholar
  6. Altintas I, Lin AW, Chen J, Churas C, Gujral M, Sun S, Li W, Manansala R, Sedova M, Grethe JS (2010) Camera 2.0: a data-centric metagenomics community infrastructure driven by scientific workflows. In: Proceedings of the 6th World Congress on Services, 2010. IEEE, pp 352–359Google Scholar
  7. Ashton PM, Nair S, Dallman T, Rubino S, Rabsch W, Mwaigwisya S, Wain J, O'Grady J (2014) MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol 33:296–300PubMedCrossRefGoogle Scholar
  8. Ausec L, Zakrzewski M, Goesmann A, Schlüter A, Mandic-Mulec I (2011) Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes. PLoS One 6(10):e25724PubMedPubMedCentralCrossRefGoogle Scholar
  9. Ausec L, Črnigoj M, Šnajder M, Ulrih NP, Mandic-Mulec I (2015) Characterization of a novel high-pH-tolerant laccase-like multicopper oxidase and its sequence diversity in Thioalkalivibrio sp. Appl Microbiol Biotechnol 99(23):9987–9999PubMedCrossRefGoogle Scholar
  10. Baker G, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55(3):541–555PubMedCrossRefGoogle Scholar
  11. Bakermans C, Skidmore ML, Douglas S, McKay CP (2014) Molecular characterization of bacteria from permafrost of the Taylor Valley, Antarctica. FEMS Microbiol Ecol 89(2):331–346PubMedCrossRefGoogle Scholar
  12. Bayer TS, Widmaier DM, Temme K, Mirsky EA, Santi DV, Voigt CA (2009) Synthesis of methyl halides from biomass using engineered microbes. J Am Chem Soc 131(18):6508–6515PubMedCrossRefGoogle Scholar
  13. Behzad H, Gojobori T, Mineta K (2015) Challenges and opportunities of airborne metagenomics. Genome Biol Evol 7(5):1216–1226PubMedPubMedCentralCrossRefGoogle Scholar
  14. Berlemont R, Delsaute M, Pipers D, D'Amico S, Feller G, Galleni M, Power P (2009) Insights into bacterial cellulose biosynthesis by functional metagenomics on Antarctic soil samples. ISME J 3(9):1070–1081PubMedCrossRefGoogle Scholar
  15. Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ (2015) Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 13:677–690PubMedCrossRefGoogle Scholar
  16. Boisvert S, Raymond F, Godzaridis É, Laviolette F, Corbeil J (2012) Ray meta: scalable de novo metagenome assembly and profiling. Genome Biol 13(12):R122PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bonilla-Rosso G, Peimbert M, Alcaraz LD, Hernández I, Eguiarte LE, Olmedo-Alvarez G, Souza V (2012) Comparative metagenomics of two microbial mats at Cuatro Ciénegas Basin II: community structure and composition in oligotrophic environments. Astrobiology 12(7):659–673PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bowman JS, Berthiaume CT, Armbrust EV, Deming JW (2014) The genetic potential for key biogeochemical processes in Arctic frost flowers and young sea ice revealed by metagenomic analysis. FEMS Microbiol Ecol 89(2):376–387PubMedCrossRefGoogle Scholar
  19. Brady A, Salzberg SL (2009) Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models. Nat Methods 6(9):673–676PubMedPubMedCentralCrossRefGoogle Scholar
  20. Brooks JP, Edwards DJ, Harwich MD, Rivera MC, Fettweis JM, Serrano MG, Reris RA, Sheth NU, Huang B, Girerd P, Strauss JF, Jefferson KK, Buck GA (2015) The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies. BMC Microbiol 15(1):66PubMedPubMedCentralCrossRefGoogle Scholar
  21. Brown MV, Lauro FM, DeMaere MZ, Muir L, Wilkins D, Thomas T, Riddle MJ, Fuhrman JA, Andrews-Pfannkoch C, Hoffman JM, McQuaid JB, Allen A, Rintoul SR, Cavicchioli R (2012) Global biogeography of SAR11 marine bacteria. Mol Syst Biol 8:595PubMedPubMedCentralCrossRefGoogle Scholar
  22. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336PubMedPubMedCentralCrossRefGoogle Scholar
  23. Carneiro MO, Russ C, Ross MG, Gabriel SB, Nusbaum C, DePristo MA (2012) Pacific biosciences sequencing technology for genotyping and variation discovery in human data. BMC Genomics 13:375–375PubMedPubMedCentralCrossRefGoogle Scholar
  24. Carvalhais LC, Dennis PG, Tyson GW, Schenk PM (2012) Application of metatranscriptomics to soil environments. J Microbiol Methods 91(2):246–251PubMedCrossRefGoogle Scholar
  25. Casanueva A, Tuffin M, Cary C, Cowan DA (2010) Molecular adaptations to psychrophily: the impact of ‘omic’ technologies. Trends Microbiol 18(8):374–381PubMedCrossRefGoogle Scholar
  26. Catherman AD, Skinner OS, Kelleher NL (2014) Top down proteomics: facts and perspectives. Biochem Biophys Res Commun 445(4):683–693PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cavicchioli R (2015) On the concept of a psychrophile. ISME J 10(4):793–795PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cavicchioli R, Charlton T, Ertan H, Mohd OS, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4(4):449–460PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cavicchioli R, Siddiqui K, Andrews D, Sowers K (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13(3):253–261PubMedCrossRefGoogle Scholar
  30. Chan Y, Van Nostrand JD, Zhou J, Pointing SB, Farrell RL (2013) Functional ecology of an Antarctic dry valley. Proc Natl Acad Sci USA 110(22):8990–8995PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cho S, Cho Y, Lee S, Kim J, Yum H, Kim SC, Cho B-K (2013) Current challenges in bacterial transcriptomics. Genomics Inform 11(2):76–82PubMedPubMedCentralCrossRefGoogle Scholar
  32. Choi S-L, Rha E, Lee SJ, Kim H, Kwon K, Jeong Y-S, Rhee YH, Song JJ, Kim H-S, Lee S-G (2013) Toward a generalized and high-throughput enzyme screening system based on artificial genetic circuits. ACS Synth Biol 3(3):163–171PubMedCrossRefGoogle Scholar
  33. Chung EJ, Lim HK, Kim J-C, Choi GJ, Park EJ, Lee MH, Chung YR, Lee S-W (2008) Forest soil metagenome gene cluster involved in antifungal activity expression in Escherichia coli. Appl Environ Microbiol 74(3):723–730PubMedCrossRefGoogle Scholar
  34. Claesson MJ, Wang Q, O'Sullivan O, Greene-Diniz R, Cole JR, Ross RP, O'Toole PW (2010) Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res 38(22):e200PubMedPubMedCentralCrossRefGoogle Scholar
  35. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen A, McGarrell DM, Marsh T, Garrity GM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(Suppl 1):D141–D145PubMedCrossRefGoogle Scholar
  36. Colin P-Y, Kintses B, Gielen F, Miton CM, Fischer G, Mohamed MF, Hyvönen M, Morgavi DP, Janssen DB, Hollfelder F (2015) Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat Commun 6:10008PubMedPubMedCentralCrossRefGoogle Scholar
  37. Colwell R(2013) EstimateS: Statistical estimation of species richness and shared species from samples. Version 9.1.0. User’s guide and application available online: http://purl.oclc.org/estimates
  38. Cortassa S, Caceres V, Bell LN, O’Rourke B, Paolocci N, Aon MA (2015) From metabolomics to fluxomics: a computational procedure to translate metabolite profiles into metabolic fluxes. Biophys J 108(1):163–172PubMedPubMedCentralCrossRefGoogle Scholar
  39. Cottrell MT, Yu L, Kirchman DL (2005) Sequence and expression analyses of Cytophaga-like hydrolases in a Western Arctic metagenomic library and the Sargasso Sea. Appl Environ Microbiol 71(12):8506–8513PubMedPubMedCentralCrossRefGoogle Scholar
  40. Courtois S, Cappellano CM, Ball M, Francou F-X, Normand P, Helynck G, Martinez A, Kolvek SJ, Hopke J, Osburne MS, August PR, Nalin R, Guérineau M, Jeannin P, Simonet P, Pernodet J-L (2003) Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl Environ Microbiol 69(1):49–55PubMedPubMedCentralCrossRefGoogle Scholar
  41. Croucher NJ, Thomson NR (2010) Studying bacterial transcriptomes using RNA-seq. Curr Opin Microbiol 13(5):619–624PubMedPubMedCentralCrossRefGoogle Scholar
  42. Culligan EP, Sleator RD, Marchesi JR, Hill C (2014) Metagenomics and novel gene discovery: promise and potential for novel therapeutics. Virulence 5(3):399–412PubMedCrossRefGoogle Scholar
  43. De Maayer P, Anderson D, Cary C, Cowan DA (2014a) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15(5):508–517PubMedPubMedCentralCrossRefGoogle Scholar
  44. De Maayer P, Valverde A, Cowan DA (2014b) The current state of metagenomic analysis. In: Poptsova MS (ed) Genome analysis: current procedures and applications. Caister Academic Press, Norfolk, UK, pp 183–220Google Scholar
  45. Delmont TO, Robe P, Clark I, Simonet P, Vogel TM (2011) Metagenomic comparison of direct and indirect soil DNA extraction approaches. J Microbiol Methods 86(3):397–400PubMedCrossRefGoogle Scholar
  46. Denonfoux J, Parisot N, Dugat-Bony E, Biderre-Petit C, Boucher D, Morgavi DP, Le Paslier D, Peyretaillade E, Peyret P (2013) Gene capture coupled to high-throughput sequencing as a strategy for targeted metagenome exploration. DNA Res 20(2):185–196PubMedPubMedCentralCrossRefGoogle Scholar
  47. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072PubMedPubMedCentralCrossRefGoogle Scholar
  48. Earl D, Bradnam K, St John J, Darling A, Lin D, Fass J, Yu HO, Buffalo V, Zerbino DR, Diekhans M, Nguyen N, Ariyaratne PN, Sung WK, Ning Z, Haimel M, Simpson JT, Fonseca NA, Birol I, Docking TR, Ho IY, Rokhsar DS, Chikhi R, Lavenier D, Chapuis G, Naquin D, Maillet N, Schatz MC, Kelley DR, Phillippy AM, Koren S, Yang SP, Wu W, Chou WC, Srivastava A, Shaw TI, Ruby JG, Skewes-Cox P, Betegon M, Dimon MT, Solovyev V, Seledtsov I, Kosarev P, Vorobyev D, Ramirez-Gonzalez R, Leggett R, MacLean D, Xia F, Luo R, Li Z, Xie Y, Liu B, Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Yin S, Sharpe T, Hall G, Kersey PJ, Durbin R, Jackman SD, Chapman JA, Huang X, DeRisi JL, Caccamo M, Li Y, Jaffe DB, Green RE, Haussler D, Korf I, Paten B (2011) Assemblathon 1: a competitive assessment of de novo short read assembly methods. Genome Res 21(12):2224–2241PubMedPubMedCentralCrossRefGoogle Scholar
  49. Edwards A, Debbonaire AR, Sattler B, Mur LA, Hodson AJ (2016) Extreme metagenomics using nanopore DNA sequencing: a field report from Svalbard, 78 N. BioRxiv. doi: 10.1101/073965
  50. Edwards DJ, Holt KE (2013) Beginner’s guide to comparative bacterial genome analysis using next-generation sequence data. Microb Inform Exp 3(1):2PubMedPubMedCentralCrossRefGoogle Scholar
  51. Escalona M, Rocha S, Posada D (2016) A comparison of tools for the simulation of genomic next-generation sequencing data. Nat Rev Genet 17(8):459–469PubMedPubMedCentralCrossRefGoogle Scholar
  52. Fahlgren C, Bratbak G, Sandaa R-A, Thyrhaug R, Zweifel UL (2011) Diversity of airborne bacteria in samples collected using different devices for aerosol collection. Aerobiologia 27(2):107–120CrossRefGoogle Scholar
  53. Fang Z, Li T, Wang Q, Zhang X, Peng H, Fang W, Hong Y, Ge H, Xiao Y (2011) A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability. Appl Microbiol Biotechnol 89(4):1103–1110PubMedCrossRefGoogle Scholar
  54. Fang Z-M, Li T-L, Chang F, Zhou P, Fang W, Hong Y-Z, Zhang X-C, Peng H, Xiao Y-Z (2012) A new marine bacterial laccase with chloride-enhancing, alkaline-dependent activity and dye decolorization ability. Bioresour Technol 111:36–41PubMedCrossRefGoogle Scholar
  55. Ferrer M, Martínez-Martínez M, Bargiela R, Streit WR, Golyshina OV, Golyshin PN (2016) Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb Biotechnol 9(1):22–34PubMedCrossRefGoogle Scholar
  56. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, Ashburner M, Axelrod N, Baldauf S, Ballard S, Boore J, Cochrane G, Cole J, Dawyndt P, De Vos P, dePamphilis C, Edwards R, Faruque N, Feldman R, Gilbert J, Gilna P, Glockner FO, Goldstein P, Guralnick R, Haft D, Hancock D, Hermjakob H, Hertz-Fowler C, Hugenholtz P, Joint I, Kagan L, Kane M, Kennedy J, Kowalchuk G, Kottmann R, Kolker E, Kravitz S, Kyrpides N, Leebens-Mack J, Lewis SE, Li K, Lister AL, Lord P, Maltsev N, Markowitz V, Martiny J, Methe B, Mizrachi I, Moxon R, Nelson K, Parkhill J, Proctor L, White O, Sansone S-A, Spiers A, Stevens R, Swift P, Taylor C, Tateno Y, Tett A, Turner S, Ussery D, Vaughan B, Ward N, Whetzel T, San Gil I, Wilson G, Wipat A (2008) The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 26(5):541–547PubMedPubMedCentralCrossRefGoogle Scholar
  57. Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, Robeson M, Edwards RA, Felts B, Rayhawk S, Knight R, Rohwer F, Jackson RB (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol 73(21):7059–7066PubMedPubMedCentralCrossRefGoogle Scholar
  58. Forde BM, O’Toole PW (2013) Next-generation sequencing technologies and their impact on microbial genomics. Brief Funct Genomics 12(5):440–453PubMedCrossRefGoogle Scholar
  59. Franzetti A, Tagliaferri I, Gandolfi I, Bestetti G, Minora U, Mayer C, Azzoni RS, Diolaiuti G, Smiraglia C, Ambrosini R (2016) Light-dependent microbial metabolisms drive carbon fluxes on glacier surfaces. ISME J 10:2984–2988PubMedCrossRefGoogle Scholar
  60. Franzosa EA, Hsu T, Sirota-Madi A, Shafquat A, Abu-Ali G, Morgan XC, Huttenhower C (2015) Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol 13(6):360–372PubMedPubMedCentralCrossRefGoogle Scholar
  61. Fu J, Leiros H-KS, de Pascale D, Johnson KA, Blencke H-M, Landfald B (2013) Functional and structural studies of a novel cold-adapted esterase from an Arctic intertidal metagenomic library. Appl Microbiol Biotechnol 97(9):3965–3978PubMedCrossRefGoogle Scholar
  62. Gandolfi I, Bertolini V, Ambrosini R, Bestetti G, Franzetti A (2013) Unravelling the bacterial diversity in the atmosphere. Appl Microbiol Biotechnol 97(11):4727–4736PubMedCrossRefGoogle Scholar
  63. Gasc C, Ribière C, Parisot N, Beugnot R, Defois C, Petit-Biderre C, Boucher D, Peyretaillade E, Peyret P (2015) Capturing prokaryotic dark matter genomes. Res Microbiol 166(10):814–830PubMedCrossRefGoogle Scholar
  64. Gilbert JA, Laverock B, Temperton B, Thomas S, Muhling M, Hughes M (2011) Metagenomics. High-throughput next generation sequencing: methods and applications. In: Kwon YM, Ricke SC (eds) Methods in molecular biology, vol 733. Springer Science+Business Media, Heidelberg, pp 173–183Google Scholar
  65. Gilbert JA, Steele JA, Caporaso JG, Steinbruck L, Reeder J, Temperton B, Huse S, McHardy AC, Knight R, Joint I, Somerfield P, Fuhrman JA, Field D (2012) Defining seasonal marine microbial community dynamics. ISME J 6(2):298–308PubMedCrossRefGoogle Scholar
  66. Gilichinsky D, Wilson G, Friedmann E, McKay C, Sletten R, Rivkina E, Vishnivetskaya T, Erokhina L, Ivanushkina N, Kochkina G (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7(2):275–311PubMedCrossRefGoogle Scholar
  67. Goordial J, Davila A, Greer CW, Cannam R, DiRuggiero J, McKay CP, Whyte LG (2016a) Comparative activity and functional ecology of permafrost soils and lithic niches in a hyper-arid polar desert. Environ Microbiol. doi: 10.1111/1462-2920.13353 PubMedGoogle Scholar
  68. Goordial J, Davila A, Lacelle D, Pollard W, Marinova MM, Greer CW, DiRuggiero J, McKay CP, Whyte LG (2016b) Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. ISME J 10(7):1613–1624PubMedPubMedCentralCrossRefGoogle Scholar
  69. Gotelli NJ, Colwell RK (2011) Estimating species richness. In: Magurran AE, McGill BJ (eds) Biological diversity: frontiers in measurement and assessment, vol 12. Oxford University Press, Oxford, pp 39–54Google Scholar
  70. Greninger AL, Naccache SN, Federman S, Yu G, Mbala P, Bres V, Stryke D, Bouquet J, Somasekar S, Linnen JM, Dodd R, Mulembakani P, Schneider BS, Muyembe-Tamfum J-J, Stramer SL, Chiu CY (2015) Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med 7(1):99PubMedPubMedCentralCrossRefGoogle Scholar
  71. Grzymski JJ, Carter BJ, DeLong EF, Feldman RA, Ghadiri A, Murray AE (2006) Comparative genomics of DNA fragments from six Antarctic marine planktonic bacteria. Appl Environ Microbiol 72(2):1532–1541PubMedPubMedCentralCrossRefGoogle Scholar
  72. Haider MN, Nishimura M, Kogure K (2016) Bacterial community structure and diversity of closely located coastal areas. Open J Marine Sci 6:423–439CrossRefGoogle Scholar
  73. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68(4):669–685PubMedPubMedCentralCrossRefGoogle Scholar
  74. Handelsman J, Liles M, Mann D, Riesenfeld C, Goodman RM (2002) Cloning the metagenome: culture-independent access to the diversity and functions of the uncultivated microbial world. Methods Microbiol 33:241–255CrossRefGoogle Scholar
  75. Hårdeman F, Sjöling S (2007) Metagenomic approach for the isolation of a novel low-temperature-active lipase from uncultured bacteria of marine sediment. FEMS Microbiol Ecol 59(2):524–534PubMedCrossRefGoogle Scholar
  76. He S, Wurtzel O, Singh K, Froula JL, Yilmaz S, Tringe SG, Wang Z, Chen F, Lindquist EA, Sorek R, Hugenholtz P (2010) Validation of two ribosomal RNA removal methods for microbial metatranscriptomics. Nat Methods 7(10):807–812PubMedCrossRefGoogle Scholar
  77. Heath C, Hu XP, Cary SC, Cowan D (2009) Identification of a novel alkaliphilic esterase active at low temperatures by screening a metagenomic library from Antarctic desert soil. Appl Environ Microbiol 75(13):4657–4659PubMedPubMedCentralCrossRefGoogle Scholar
  78. Hosokawa M, Hoshino Y, Nishikawa Y, Hirose T, Yoon DH, Mori T, Sekiguchi T, Shoji S, Takeyama H (2015) Droplet-based microfluidics for high-throughput screening of a metagenomic library for isolation of microbial enzymes. Biosens Bioelectron 67:379–385PubMedCrossRefGoogle Scholar
  79. Howeler M, Ghiorse WC, Walker LP (2003) A quantitative analysis of DNA extraction and purification from compost. J Microbiol Methods 54(1):37–45PubMedCrossRefGoogle Scholar
  80. Hu XP, Heath C, Taylor MP, Tuffin M, Cowan D (2012) A novel, extremely alkaliphilic and cold-active esterase from Antarctic desert soil. Extremophiles 16(1):79–86PubMedCrossRefGoogle Scholar
  81. Hugerth LW, Larsson J, Alneberg J, Lindh MV, Legrand C, Pinhassi J, Andersson AF (2015) Metagenome-assembled genomes uncover a global brackish microbiome. Genome Biol 16:279PubMedPubMedCentralCrossRefGoogle Scholar
  82. Hultman J, Waldrop MP, Mackelprang R, David MM, McFarland J, Blazewicz SJ, Harden J, Turetsky MR, McGuire AD, Shah MB (2015) Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521(7551):208–212PubMedCrossRefGoogle Scholar
  83. Hunter S, Corbett M, Denise H, Fraser M, Gonzalez-Beltran A, Hunter C, Jones P, Leinonen R, McAnulla C, Maguire E (2014) EBI metagenomics—a new resource for the analysis and archiving of metagenomic data. Nucleic Acids Res 42(D1):D600–D606PubMedCrossRefGoogle Scholar
  84. Huson DH, Weber N (2012) Microbial community analysis using MEGAN. Methods Enzymol 531:465–485CrossRefGoogle Scholar
  85. Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17(3):377–386PubMedPubMedCentralCrossRefGoogle Scholar
  86. Iqbal HA, Feng Z, Brady SF (2012) Biocatalysts and small molecule products from metagenomic studies. Curr Opin Chem Biol 16(1–2):109–116PubMedPubMedCentralCrossRefGoogle Scholar
  87. Iwai S, Chai B, Sul WJ, Cole JR, Hashsham SA, Tiedje JM (2009) Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment. ISME J 4(2):279–285PubMedPubMedCentralCrossRefGoogle Scholar
  88. Iwai S, Chai B, Jesus EC, Penton CR, Lee TK, Cole JR, Tiedje JM (2011) Gene-targeted metagenomics (GT Metagenomics) to explore the extensive diversity of genes of interest in microbial communities. In: de Bruijn FJ (ed) Handbook of molecular microbial ecology I. Wiley-Blackwell, pp 235–243Google Scholar
  89. Jain M, Fiddes IT, Miga KH, Olsen HE, Paten B, Akeson M (2015) Improved data analysis for the MinION nanopore sequencer. Nat Methods 12:351–356PubMedPubMedCentralCrossRefGoogle Scholar
  90. Jeon JH, Kim J-T, Kang SG, Lee J-H, Kim S-J (2009) Characterization and its potential application of two esterases derived from the arctic sediment metagenome. Mar Biotechnol 11(3):307–316PubMedCrossRefGoogle Scholar
  91. Ji M, van Dorst J, Bissett A, Brown MV, Palmer AS, Snape I, Siciliano SD, Ferrari BC (2016) Microbial diversity at Mitchell Peninsula, Eastern Antarctica: a potential biodiversity “hotspot”. Polar Biol 39(2):237–249CrossRefGoogle Scholar
  92. Jiang C, Wu L-L, Zhao G-C, Shen P-H, Jin K, Hao Z-Y, Li S-X, Ma G-F, Luo F-F, Hu G-Q, Kang W-L, Qin X-M, Bi Y-L, Tang X-L, Wu B (2010) Identification and characterization of a novel fumarase gene by metagenome expression cloning from marine microorganisms. Microb Cell Factories 9:91–91CrossRefGoogle Scholar
  93. Jogler C, Lin W, Meyerdierks A, Kube M, Katzmann E, Flies C, Pan Y, Amann R, Reinhardt R, Schüler D (2009) Toward cloning of the magnetotactic metagenome: identification of magnetosome island gene clusters in uncultivated magnetotactic bacteria from different aquatic sediments. Appl Environ Microbiol 75(12):3972–3979PubMedPubMedCentralCrossRefGoogle Scholar
  94. Jones DS, Flood BE, Bailey JV (2015) Metatranscriptomic analysis of diminutive Thiomargarita-like bacteria (“Candidatus Thiopilula” spp.) from abyssal cold seeps of the Barbados Accretionary Prism. Appl Environ Microbiol 81(9):3142–3156PubMedPubMedCentralCrossRefGoogle Scholar
  95. Jones DS, Flood BE, Bailey JV (2016) Metatranscriptomic insights into polyphosphate metabolism in marine sediments. ISME J 10(4):1015–1019PubMedCrossRefGoogle Scholar
  96. Jones OA, Maguire ML, Griffin JL, Dias DA, Spurgeon DJ, Svendsen C (2013) Metabolomics and its use in ecology. Austral Ecol 38(6):713–720CrossRefGoogle Scholar
  97. Jungblut PR (2014) The proteomics quantification dilemma. J Proteome 107:98–102CrossRefGoogle Scholar
  98. Kang DD, Froula J, Egan R, Wang Z (2015) MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3:e1165PubMedPubMedCentralCrossRefGoogle Scholar
  99. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114. doi: 10.1093/nar/gkr988 PubMedCrossRefGoogle Scholar
  100. Kelleher NL (2004) Peer reviewed: top-down proteomics. Anal Chem 76(11):196A–203ACrossRefGoogle Scholar
  101. Kennedy NA, Walker AW, Berry SH, Duncan SH, Farquarson FM, Louis P, Thomson JM, Satsangi J, Flint HJ, Parkhill J, Lees CW, Hold GL, Other members not named within the manuscript author l (2014) The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing. PLoS One 9(2):e88982Google Scholar
  102. Kim M, Lee K-H, Yoon S-W, Kim B-S, Chun J, Yi H (2013) Analytical tools and databases for metagenomics in the next-generation sequencing era. Genomics Inform 11(3):102–113PubMedPubMedCentralCrossRefGoogle Scholar
  103. Konstantinidis KT, Braff J, Karl DM, DeLong EF (2009) Comparative metagenomic analysis of a microbial community residing at a depth of 4,000 meters at station ALOHA in the North Pacific subtropical gyre. Appl Environ Microbiol 75(16):5345–5355PubMedPubMedCentralCrossRefGoogle Scholar
  104. Kotik M (2009) Novel genes retrieved from environmental DNA by polymerase chain reaction: current genome-walking techniques for future metagenome applications. J Biotechnol 144(2):75–82PubMedCrossRefGoogle Scholar
  105. Krause L, Diaz NN, Goesmann A, Kelley S, Nattkemper TW, Rohwer F, Edwards RA, Stoye J (2008) Phylogenetic classification of short environmental DNA fragments. Nucleic Acids Res 36(7):2230–2239PubMedPubMedCentralCrossRefGoogle Scholar
  106. Kremkow B, Lee K (2015) Sequencing technologies for animal cell culture research. Biotechnol Lett 37(1):55–65PubMedCrossRefGoogle Scholar
  107. Lämmle K, Zipper H, Breuer M, Hauer B, Buta C, Brunner H, Rupp S (2007) Identification of novel enzymes with different hydrolytic activities by metagenome expression cloning. J Biotechnol 127(4):575–592PubMedCrossRefGoogle Scholar
  108. Land M, Hauser L, Jun S-R, Nookaew I, Leuze MR, Ahn T-H, Karpinets T, Lund O, Kora G, Wassenaar T (2015) Insights from 20 years of bacterial genome sequencing. Funct Integr Genomics 15(2):141–161PubMedPubMedCentralCrossRefGoogle Scholar
  109. Lankadurai BP, Nagato EG, Simpson MJ (2013) Environmental metabolomics: an emerging approach to study organism responses to environmental stressors. Environ Rev 21(3):180–205CrossRefGoogle Scholar
  110. Le PT, Makhalanyane TP, Guerrero LD, Vikram S, Van de Peer Y, Cowan DA (2016) Comparative metagenomic analysis reveals mechanisms for stress response in hypoliths from extreme hyperarid deserts. Genome Biol Evol 8(9):2737–2747PubMedCrossRefGoogle Scholar
  111. Lee D-H, Choi S-L, Rha E, Kim SJ, Yeom S-J, Moon J-H, Lee S-G (2015) A novel psychrophilic alkaline phosphatase from the metagenome of tidal flat sediments. BMC Biotechnol 15(1):1–13PubMedPubMedCentralCrossRefGoogle Scholar
  112. Leung HCM, Wang Y, Yiu SM, Chin FYL (2015) Next-generation sequencing for metagenomic data: assembling and binning. In: Nelson KE (ed) Encyclopedia of metagenomics: genes, genomes and metagenomes: basics, methods, databases and tools. Springer US, Boston, MA, pp 539–544Google Scholar
  113. Lin H-H, Liao Y-C (2016) Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci Rep 6:24175PubMedPubMedCentralCrossRefGoogle Scholar
  114. Liu B, Gibbons T, Ghodsi M, Pop M (2010) MetaPhyler: taxonomic profiling for metagenomic sequences. In: Proceedings of the IEEE international conference on bioinformatics and biomedicine (BIBM), pp 95–100Google Scholar
  115. Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:251364PubMedPubMedCentralGoogle Scholar
  116. Liu Z, DeSantis TZ, Andersen GL, Knight R (2008) Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Res 36(18):e120Google Scholar
  117. Logares R, Haverkamp TH, Kumar S, Lanzén A, Nederbragt AJ, Quince C, Kauserud H (2012) Environmental microbiology through the lens of high-throughput DNA sequencing: synopsis of current platforms and bioinformatics approaches. J Microbiol Methods 91(1):106–113PubMedCrossRefGoogle Scholar
  118. Loman NJ, Pallen MJ (2015) Twenty years of bacterial genome sequencing. Nat Rev Microbiol 13(12):787–794PubMedCrossRefGoogle Scholar
  119. Lopatina A, Medvedeva S, Shmakov S, Logacheva MD, Krylenkov V, Severinov K (2016) Metagenomic analysis of bacterial communities of Antarctic surface snow. Front Microbiol 7:398PubMedPubMedCentralCrossRefGoogle Scholar
  120. López-Garcıa P, López-López A, Moreira D, Rodrıguez-Valera F (2001) Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front. FEMS Microbiol Ecol 36(2–3):193–202PubMedCrossRefGoogle Scholar
  121. Lorenzi HA, Hoover J, Inman J, Safford T, Murphy S, Kagan L, Williamson SJ (2011) The Viral MetaGenome Annotation Pipeline (VMGAP): an automated tool for the functional annotation of viral metagenomic shotgun sequencing data. Stand Genomic Sci 4(3):418PubMedPubMedCentralCrossRefGoogle Scholar
  122. Lozupone CA, Knight R (2008) Species divergence and the measurement of microbial diversity. FEMS Microbiol Rev 32(4):557–578PubMedPubMedCentralCrossRefGoogle Scholar
  123. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Buchner A, Lai T, Steppi S, Jobb G, Förster W (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32(4):1363–1371PubMedPubMedCentralCrossRefGoogle Scholar
  124. MacDonald NJ, Parks DH, Beiko RG (2012) Rapid identification of high-confidence taxonomic assignments for metagenomic data. Nucleic Acids Res 40(14):e111PubMedPubMedCentralCrossRefGoogle Scholar
  125. Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, Rubin EM, Jansson JK (2011) Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480(7377):368–371PubMedCrossRefGoogle Scholar
  126. Mackelprang R, Saleska SR, Jacobsen CS, Jansson JK, Taş N (2014) Permafrost meta-omics and climate change. Annu Rev Earth Planet Sci 44:439–462CrossRefGoogle Scholar
  127. Marchesi JR, Ravel J (2015) The vocabulary of microbiome research: a proposal. Microbiome 3(1):1–3CrossRefGoogle Scholar
  128. Margesin R, Feller G (2010) Biotechnological applications of psychrophiles. Environ Technol 31(8–9):835–844PubMedCrossRefGoogle Scholar
  129. Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162(3):346–361PubMedCrossRefGoogle Scholar
  130. Markowitz VM, Chen IMA, Chu K, Szeto E, Palaniappan K, Pillay M, Ratner A, Huang J, Pagani I, Tringe S, Huntemann M, Billis K, Varghese N, Tennessen K, Mavromatis K, Pati A, Ivanova NN, Kyrpides NC (2014) IMG/M 4 version of the integrated metagenome comparative analysis system. Nucleic Acids Res 42:D568–D573PubMedCrossRefGoogle Scholar
  131. Matos MN, Lozada M, Anselmino LE, Musumeci MA, Henrissat B, Jansson JK, Mac Cormack WP, Carroll J, Sjöling S, Lundgren L (2016) Metagenomics unveils the attributes of the alginolytic guilds of sediments from four distant cold coastal environments. Environ Microbiol. doi: 10.1111/1462-2920.13433 PubMedGoogle Scholar
  132. Matsen FA, Kodner RB, Armbrust EV (2010) pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics 11:538PubMedPubMedCentralCrossRefGoogle Scholar
  133. May C, Brosseron F, Pfeiffer K, Meyer HE, Marcus K (2012) Proteome analysis with classical 2D-PAGE. In: Marcus K (ed) Quantitative methods in proteomics. Humana Press, New York, pp 37–46CrossRefGoogle Scholar
  134. McHardy AC, Martin HG, Tsirigos A, Hugenholtz P, Rigoutsos I (2007) Accurate phylogenetic classification of variable-length DNA fragments. Nat Methods 4(1):63–72PubMedCrossRefGoogle Scholar
  135. Meiring TL, Bauer R, Scheepers I, Ohloff C, Tuffin I, Cowan DA (2011) Metagenomics and beyond: current approaches and integration with complementary technologies. Metagenomics: current innovations and future trends. Caister Academic Press, Norfolk, pp 1–19Google Scholar
  136. Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A (2008) The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386PubMedPubMedCentralCrossRefGoogle Scholar
  137. Mirete S, Morgante V, González-Pastor JE (2016) Functional metagenomics of extreme environments. Curr Opin Biotechnol 38:143–149PubMedCrossRefGoogle Scholar
  138. Mondav R, Woodcroft BJ, Kim E-H, McCalley CK, Hodgkins SB, Crill PM, Chanton J, Hurst GB, VerBerkmoes NC, Saleska SR (2014) Discovery of a novel methanogen prevalent in thawing permafrost. Nat Commun 5:3212PubMedCrossRefGoogle Scholar
  139. Moran MA, Satinsky B, Gifford SM, Luo H, Rivers A, Chan L-K, Meng J, Durham BP, Shen C, Varaljay VA (2013) Sizing up metatranscriptomics. ISME J 7(2):237–243PubMedCrossRefGoogle Scholar
  140. Mutz K-O, Heilkenbrinker A, Lönne M, Walter J-G, Stahl F (2013) Transcriptome analysis using next-generation sequencing. Curr Opin Biotechnol 24(1):22–30PubMedCrossRefGoogle Scholar
  141. Najah M, Calbrix R, Mahendra-Wijaya IP, Beneyton T, Griffiths Andrew D, Drevelle A (2014) Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms. Chem Biol 21(12):1722–1732PubMedCrossRefGoogle Scholar
  142. Namiki T, Hachiya T, Tanaka H, Sakakibara Y (2012) MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res 40(20):e155PubMedPubMedCentralCrossRefGoogle Scholar
  143. Nayfach S, Pollard KS (2016) Toward accurate and quantitative comparative metagenomics. Cell 166(5):1103–1116PubMedPubMedCentralCrossRefGoogle Scholar
  144. Nguyen N-P, Warnow T, Pop M, White B (2016) A perspective on 16S rRNA operational taxonomic unit clustering using sequence similarity. Npj Biofilms Microbiomes 2:16004CrossRefGoogle Scholar
  145. Niederberger TD, Sohm JA, Gunderson TE, Parker AE, Tirindelli J, Capone DG, Carpenter EJ, Cary SC (2015) Microbial community composition of transiently wetted Antarctic Dry Valley soils. Front Microbiol 6:9PubMedPubMedCentralGoogle Scholar
  146. O’Malley MA (2013) Metametabolomics. In: Dubitzky W, Wolkenhauer O, Cho K-H, Yokota H (eds) Encyclopedia of systems biology. Springer, New York, pp 1296–1297CrossRefGoogle Scholar
  147. Orsi WD, Edgcomb VP, Christman GD, Biddle JF (2013) Gene expression in the deep biosphere. Nature 499(7457):205–208PubMedCrossRefGoogle Scholar
  148. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M (2014) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:D206–D214PubMedCrossRefGoogle Scholar
  149. Ozsolak F, Milos PM (2011) Single-molecule direct RNA sequencing without cDNA synthesis. Wiley Interdiscip Rev RNA 2(4):565–570PubMedPubMedCentralCrossRefGoogle Scholar
  150. Pace N, Stahl D, Lane D, Olsen G (1986) The analysis of natural microbial populations by rRNA sequences. Adv Microb Ecol 9:1–55CrossRefGoogle Scholar
  151. Pareja-Tobes P, Manrique M, Pareja-Tobes E, Pareja E, Tobes R (2012) BG7: a new approach for bacterial genome annotation designed for next generation sequencing data. PLoS One 7(11):e49239PubMedPubMedCentralCrossRefGoogle Scholar
  152. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055PubMedPubMedCentralCrossRefGoogle Scholar
  153. Paszkiewicz K, Studholme DJ (2010) De novo assembly of short sequence reads. Brief Bioinform 11(5):457–472PubMedCrossRefGoogle Scholar
  154. Payne SH (2015) The utility of protein and mRNA correlation. Trends Biochem Sci 40(1):1–3PubMedCrossRefGoogle Scholar
  155. Pearce DA, Newsham KK, Thorne MA, Calvo-Bado L, Krsek M, Laskaris P, Hodson A, Wellington EM (2012) Metagenomic analysis of a southern maritime Antarctic soil. Front Microbiol 3:403PubMedPubMedCentralCrossRefGoogle Scholar
  156. Peng Y, Leung HC, Yiu S-M, Chin FY (2011) Meta-IDBA: a de Novo assembler for metagenomic data. Bioinformatics 27(13):i94–i101PubMedPubMedCentralCrossRefGoogle Scholar
  157. Peng Y, Leung HC, Yiu S-M, Chin FY (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11):1420–1428PubMedCrossRefGoogle Scholar
  158. Perkel JM (2009) Life science technologies: Sanger who? Sequencing the next generation. Science 324(5924):275–279CrossRefGoogle Scholar
  159. Poretsky RS, Bano N, Buchan A, LeCleir G, Kleikemper J, Pickering M, Pate WM, Moran MA, Hollibaugh JT (2005) Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71(7):4121–4126PubMedPubMedCentralCrossRefGoogle Scholar
  160. Prakash T, Taylor TD (2012) Functional assignment of metagenomic data: challenges and applications. Brief Bioinform 13(6):711–727PubMedPubMedCentralCrossRefGoogle Scholar
  161. Prosser JI (2015) Dispersing misconceptions and identifying opportunities for the use of ‘omics’ in soil microbial ecology. Nat Rev Microbiol 13(7):439–446PubMedCrossRefGoogle Scholar
  162. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196PubMedPubMedCentralCrossRefGoogle Scholar
  163. Quick J, Quinlan AR, Loman NJ (2014) A reference bacterial genome dataset generated on the MinION™ portable single-molecule nanopore sequencer. Gigascience 3(1):22PubMedPubMedCentralCrossRefGoogle Scholar
  164. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouédraogo N, Afrough B, Bah A, Baum JHJ, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sánchez Á, Carter LL, Doerrbecker J, Enkirch T, Dorival IG, Hetzelt N, Hinzmann J, Holm T, Kafetzopoulou LE, Koropogui M, Kosgey A, Kuisma E, Logue CH, Mazzarelli A, Meisel S, Mertens M, Michel J, Ngabo D, Nitzsche K, Pallasch E, Patrono LV, Portmann J, Repits JG, Rickett NY, Sachse A, Singethan K, Vitoriano I, Yemanaberhan RL, Zekeng EG, Racine T, Bello A, Sall AA, Faye O, Faye O, Magassouba NF, Williams CV, Amburgey V, Winona L, Davis E, Gerlach J, Washington F, Monteil V, Jourdain M, Bererd M, Camara A, Somlare H, Camara A, Gerard M, Bado G, Baillet B, Delaune D, Nebie KY, Diarra A, Savane Y, Pallawo RB, Gutierrez GJ, Milhano N, Roger I, Williams CJ, Yattara F, Lewandowski K, Taylor J, Rachwal P, Turner DJ, Pollakis G, Hiscox JA, Matthews DA, MKO S, Johnston AM, Wilson D, Hutley E, Smit E, Di Caro A, Wölfel R, Stoecker K, Fleischmann E, Gabriel M, Weller SA, Koivogui L, Diallo B, Keïta S, Rambaut A, Formenty P, Günther S, Carroll MW (2016) Real-time, portable genome sequencing for Ebola surveillance. Nature 530(7589):228–232PubMedPubMedCentralCrossRefGoogle Scholar
  165. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequencing amplicons. BMC Bioinform 12:38CrossRefGoogle Scholar
  166. Rabilloud T, Chevallet M, Luche S, Lelong C (2010) Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteome 73(11):2064–2077CrossRefGoogle Scholar
  167. Reuter JA, Spacek DV, Snyder MP (2015) High-throughput sequencing technologies. Mol Cell 58(4):586–597PubMedPubMedCentralCrossRefGoogle Scholar
  168. Richardson EJ, Watson M (2013) The automatic annotation of bacterial genomes. Brief Bioinform 14(1):1–12PubMedCrossRefGoogle Scholar
  169. Rodrigues DF, Tiedje JM (2008) Coping with our cold planet. Appl Environ Microbiol 74(6):1677–1686PubMedPubMedCentralCrossRefGoogle Scholar
  170. Roume H, Heintz-Buschart A, Muller EEL, May P, Satagopam VP, Laczny CC, Narayanasamy S, Lebrun LA, Hoopmann MR, Schupp JM, Gillece JD, Hicks ND, Engelthaler DM, Sauter T, Keim PS, Moritz RL, Wilmes P (2015) Comparative integrated omics: identification of key functionalities in microbial community-wide metabolic networks. Npj Biofilms Microbiomes 1:15007CrossRefGoogle Scholar
  171. Salazar G, Cornejo-Castillo FM, Benitez-Barrios V, Fraile-Nuez E, Alvarez-Salgado XA, Duarte CM, Gasol JM, Acinas SG (2016) Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J 10(3):596–608PubMedCrossRefGoogle Scholar
  172. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74(12):5463–5467PubMedPubMedCentralCrossRefGoogle Scholar
  173. Sangwan N, Xia F, Gilbert JA (2016) Recovering complete and draft population genomes from metagenome datasets. Microbiome 4(1):8PubMedPubMedCentralCrossRefGoogle Scholar
  174. Schloss PD, Handelsman J (2005a) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71(3):1501–1506PubMedPubMedCentralCrossRefGoogle Scholar
  175. Schloss PD, Handelsman J (2005b) Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol 6(8):1CrossRefGoogle Scholar
  176. Schloss PD, Westcott SL (2011) Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl Environ Microbiol 77(10):3219–3226PubMedPubMedCentralCrossRefGoogle Scholar
  177. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541PubMedPubMedCentralCrossRefGoogle Scholar
  178. Schmidt K, Mwaigwisya S, Crossman L, Doumith M, Munroe D, Pires C, Khan A, Woodford N, Saunders N, Wain J (2016) Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J Antimicrob Chemother 72(1):dkw397. doi: 10.1093/jac/dkw397 Google Scholar
  179. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864PubMedPubMedCentralCrossRefGoogle Scholar
  180. Seshadri R, Kravitz SA, Smarr L, Gilna P, Frazier M (2007) CAMERA: a community resource for metagenomics. PLoS Biol 5(3):e75PubMedPubMedCentralCrossRefGoogle Scholar
  181. Sharon I, Banfield JF (2013) Genomes from metagenomics. Science 342(6162):1057–1058PubMedCrossRefGoogle Scholar
  182. Shendure J (2008) The beginning of the end for microarrays? Nat Methods 5(7):585–587PubMedCrossRefGoogle Scholar
  183. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26(10):1135–1145PubMedCrossRefGoogle Scholar
  184. Siddiqui KS, Williams TJ, Wilkins D, Yau S, Allen MA, Brown MV, Lauro FM, Cavicchioli R (2013) Psychrophiles. Annu Rev Earth Planet Sci 41:87–115CrossRefGoogle Scholar
  185. Siezen RJ, Wilson G, Todt T (2010) Prokaryotic whole transcriptome analysis: deep sequencing and tiling arrays. Microb Biotechnol 3(2):125–130PubMedPubMedCentralCrossRefGoogle Scholar
  186. Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77(4):1153–1161PubMedCrossRefGoogle Scholar
  187. Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75(23):7519–7526PubMedPubMedCentralCrossRefGoogle Scholar
  188. Simpson MJ, Bearden DW (2007) Environmental metabolomics: NMR techniques. eMagRes 2(4):549–560Google Scholar
  189. Sjöling S, Cowan DA (2008) Metagenomics: microbial community genomes revealed. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 313–332CrossRefGoogle Scholar
  190. Sjöling S, Stafford W, Cowan D (2006) Soil metagenomics: exploring and exploiting the microbial gene pool. In: van Elsas JD, Jansson JK, Trevors JT (eds) Modern soil microbiology. CRC Press, Boca Raton, pp 409–434Google Scholar
  191. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103(32):12115–12120PubMedPubMedCentralCrossRefGoogle Scholar
  192. Sorek R, Cossart P (2010) Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet 11(1):9–16PubMedCrossRefGoogle Scholar
  193. Sowell SM, Wilhelm LJ, Norbeck AD, Lipton MS, Nicora CD, Barofsky DF, Carlson CA, Smith RD, Giovanonni SJ (2008) Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J 3(1):93–105PubMedCrossRefGoogle Scholar
  194. Sowell SM, Abraham PE, Shah M, Verberkmoes NC, Smith DP, Barofsky DF, Giovannoni SJ (2011) Environmental proteomics of microbial plankton in a highly productive coastal upwelling system. ISME J 5(5):856–865PubMedCrossRefGoogle Scholar
  195. Steven B, Briggs G, McKay CP, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol 59(2):513–523PubMedCrossRefGoogle Scholar
  196. Stokke R, Roalkvam I, Lanzen A, Haflidason H, Steen IH (2012) Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Environ Microbiol 14(5):1333–1346PubMedCrossRefGoogle Scholar
  197. Stothard P, Wishart DS (2006) Automated bacterial genome analysis and annotation. Curr Opin Microbiol 9(5):505–510PubMedCrossRefGoogle Scholar
  198. Struvay C, Feller G (2012) Optimization to low temperature activity in psychrophilic enzymes. Int J Mol Sci 13(9):11643–11665PubMedPubMedCentralCrossRefGoogle Scholar
  199. Sunagawa S, Mende DR, Zeller G, Izquierdo-Carrasco F, Berger SA, Kultima JR, Coelho LP, Arumugam M, Tap J, Nielsen HB, Rasmussen S, Brunak S, Pedersen O, Guarner F, de Vos WM, Wang J, Li J, Doré J, Ehrlich SD, Stamatakis A, Bork P (2013) Metagenomic species profiling using universal phylogenetic marker genes. Nat Methods 10(12):1196–1199PubMedCrossRefGoogle Scholar
  200. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, Djahanschiri B, Zeller G, Mende DR, Alberti A (2015) Structure and function of the global ocean microbiome. Science 348(6237):1261359PubMedCrossRefGoogle Scholar
  201. Teeling H, Waldmann J, Lombardot T, Bauer M, Glöckner FO (2004) TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences. BMC Bioinformatics 5:163PubMedPubMedCentralCrossRefGoogle Scholar
  202. Thomas T, Gilbert J, Meyer F (2012) Metagenomics-a guide from sampling to data analysis. Microb Inform Exp 2:3PubMedPubMedCentralCrossRefGoogle Scholar
  203. Thureborn P, Lundin D, Plathan J, Poole AM, Sjöberg B-M, Sjöling S (2013) A metagenomics transect into the deepest point of the Baltic Sea reveals clear stratification of microbial functional capacities. PLoS One 8(9):e74983PubMedPubMedCentralCrossRefGoogle Scholar
  204. Thureborn P, Franzetti A, Lundin D, Sjöling S (2016) Reconstructing ecosystem functions of the active microbial community of the Baltic Sea oxygen depleted sediments. PeerJ 4:e1593PubMedPubMedCentralCrossRefGoogle Scholar
  205. Tseng C-H, Chiang P-W, Lai H-C, Shiah F-K, Hsu T-C, Chen Y-L, Wen L-S, Tseng C-M, Shieh W-Y, Saeed I, Halgamuge S, Tang S-L (2015) Prokaryotic assemblages and metagenomes in pelagic zones of the South China Sea. BMC Genomics 16(1):1–16CrossRefGoogle Scholar
  206. Tuffin M, Anderson D, Heath C, Cowan DA (2009) Metagenomic gene discovery: how far have we moved into novel sequence space? Biotechnol J 4(12):1671–1683PubMedCrossRefGoogle Scholar
  207. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428(6978):37–43PubMedCrossRefGoogle Scholar
  208. Uchiyama T, Miyazaki K (2009) Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr Opin Biotechnol 20(6):616–622PubMedCrossRefGoogle Scholar
  209. Uchiyama T, Miyazaki K (2010) Product-induced gene expression, a product-responsive reporter assay used to screen metagenomic libraries for enzyme-encoding genes. Appl Environ Microbiol 76(21):7029–7035PubMedPubMedCentralCrossRefGoogle Scholar
  210. Uchiyama T, Watanabe K (2008) Substrate-induced gene expression (SIGEX) screening of metagenome libraries. Nat Protoc 3(7):1202–1212PubMedCrossRefGoogle Scholar
  211. Uchiyama T, Abe T, Ikemura T, Watanabe K (2005) Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol 23(1):88–93PubMedCrossRefGoogle Scholar
  212. Ufarté L, Potocki-Veronese G, Laville É (2015) Discovery of new protein families and functions: new challenges in functional metagenomics for biotechnologies and microbial ecology. Front Microbiol 6:563PubMedPubMedCentralGoogle Scholar
  213. Uria AR, Zilda DS (2016) Metagenomics-guided mining of commercially useful biocatalysts from marine microorganisms. In: Se-Kwon K, Fidel T (eds) Advances in food and nutrition research, vol 78. Academic Press, New York, pp 1–26Google Scholar
  214. Uyaguari-Diaz MI, Chan M, Chaban BL, Croxen MA, Finke JF, Hill JE, Peabody MA, Van Rossum T, Suttle CA, Brinkman FSL, Isaac-Renton J, Prystajecky NA, Tang P (2016) A comprehensive method for amplicon-based and metagenomic characterization of viruses, bacteria, and eukaryotes in freshwater samples. Microbiome 4(1):20PubMedPubMedCentralCrossRefGoogle Scholar
  215. Van Horn DJ, Okie JG, Buelow HN, Gooseff MN, Barrett JE, Takacs-Vesbach CD (2014) Soil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desert. Appl Environ Microbiol 80(10):3034–3043PubMedPubMedCentralCrossRefGoogle Scholar
  216. Van Vliet AH (2010) Next generation sequencing of microbial transcriptomes: challenges and opportunities. FEMS Microbiol Lett 302(1):1–7PubMedCrossRefGoogle Scholar
  217. Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J (2012) Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Appl Environ Microbiol 78(2):549–559PubMedPubMedCentralCrossRefGoogle Scholar
  218. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y-H, Smith HO (2004) Environmental genome Shotgun Sequencing of the Sargasso Sea. Science 304(5667):66–74PubMedCrossRefGoogle Scholar
  219. Vester JK, Lylloff JE, Glaring MA, Stougaard P (2013) Microbial diversity and enzymes in ikaite columns; a cold and alkaline environment in Greenland. In: Seckbach J, Oren A, Stan-Lotter H (eds) Cellular origin, life in extreme habitats and astrobiology. Springer, Netherlands, pp 365–380Google Scholar
  220. Vester JK, Glaring MA, Stougaard P (2014) Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing. Microb Cell Factories 13(1):1–14CrossRefGoogle Scholar
  221. Vilanova C, Porcar M (2016) Are multi-omics enough? Nat Microbiol 1:16101PubMedCrossRefGoogle Scholar
  222. Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13(4):227–232PubMedPubMedCentralGoogle Scholar
  223. Wang D-Z, Xie Z-X, Zhang S-F (2014) Marine metaproteomics: current status and future directions. J Proteome 97:27–35CrossRefGoogle Scholar
  224. Wang J-P (2011) SPECIES: an R package for species richness estimation. J Stat Softw 40(9):1–15CrossRefGoogle Scholar
  225. Wang Y, Qian P-Y (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 4(10):e7401PubMedPubMedCentralCrossRefGoogle Scholar
  226. Warnecke F, Hess M (2009) A perspective: metatranscriptomics as a tool for the discovery of novel biocatalysts. J Biotechnol 142(1):91–95PubMedCrossRefGoogle Scholar
  227. Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24(18):2098–2100PubMedCrossRefGoogle Scholar
  228. Wei STS, Fernandez-Martinez M-A, Chan Y, Van Nostrand JD, de los Rios-Murillo A, Chiu JMY, Ganeshram AM, Cary SC, Zhou J, Pointing SB (2015) Diverse metabolic and stress-tolerance pathways in chasmoendolithic and soil communities of Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biol 38(4):433–443CrossRefGoogle Scholar
  229. White RA III, Callister SJ, Moore RJ, Baker ES, Jansson JK (2016) The past, present and future of microbiome analyses. Nat Protoc 11(11):2049–2053CrossRefGoogle Scholar
  230. Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28(4):453–470CrossRefGoogle Scholar
  231. Wierzbicka-Woś A, Bartasun P, Cieśliński H, Kur J (2013) Cloning and characterization of a novel cold-active glycoside hydrolase family 1 enzyme with β-glucosidase, β-fucosidase and β-galactosidase activities. BMC Biotechnol 13(1):22PubMedPubMedCentralCrossRefGoogle Scholar
  232. Wilhelm RC, Niederberger TD, Greer C, Whyte LG (2011) Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. Can J Microbiol 57(4):303–315PubMedCrossRefGoogle Scholar
  233. Williamson LL, Borlee BR, Schloss PD, Guan C, Allen HK, Handelsman J (2005) Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor. Appl Environ Microbiol 71(10):6335–6344PubMedPubMedCentralCrossRefGoogle Scholar
  234. Wilmes P, Bond PL (2004) The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 6(9):911–920PubMedCrossRefGoogle Scholar
  235. Wu Y-W, Tang Y-H, Tringe SG, Simmons BA, Singer SW (2014) MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome 2(1):26PubMedPubMedCentralCrossRefGoogle Scholar
  236. Yergeau E, Hogues H, Whyte LG, Greer CW (2010) The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J 4(9):1206–1214PubMedCrossRefGoogle Scholar
  237. Yilmaz P, Kottmann R, Field D, Knight R, Cole JR, Amaral-Zettler L, Gilbert JA, Karsch-Mizrachi I, Johnston A, Cochrane G, Vaughan R, Hunter C, Park J, Morrison N, Rocca-Serra P, Sterk P, Arumugam M, Bailey M, Baumgartner L, Birren BW, Blaser MJ, Bonazzi V, Booth T, Bork P, Bushman FD, Buttigieg PL, Chain PSG, Charlson E, Costello EK, Huot-Creasy H, Dawyndt P, DeSantis T, Fierer N, Fuhrman JA, Gallery RE, Gevers D, Gibbs RA, Gil IS, Gonzalez A, Gordon JI, Guralnick R, Hankeln W, Highlander S, Hugenholtz P, Jansson J, Kau AL, Kelley ST, Kennedy J, Knights D, Koren O, Kuczynski J, Kyrpides N, Larsen R, Lauber CL, Legg T, Ley RE, Lozupone CA, Ludwig W, Lyons D, Maguire E, Methe BA, Meyer F, Muegge B, Nakielny S, Nelson KE, Nemergut D, Neufeld JD, Newbold LK, Oliver AE, Pace NR, Palanisamy G, Peplies J, Petrosino J, Proctor L, Pruesse E, Quast C, Raes J, Ratnasingham S, Ravel J, Relman DA, Assunta-Sansone S, Schloss PD, Schriml L, Sinha R, Smith MI, Sodergren E, Spor A, Stombaugh J, Tiedje JM, Ward DV, Weinstock GM, Wendel D, White O, Whiteley A, Wilke A, Wortman JR, Yatsunenko T, Glockner FO (2011) Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat Biotechnol 29(5):415–420PubMedPubMedCentralCrossRefGoogle Scholar
  238. Yu EY, Kwon M-A, Lee M, Oh JY, Choi J-E, Lee JY, Song B-K, Hahm D-H, Song JK (2011) Isolation and characterization of cold-active family VIII esterases from an arctic soil metagenome. Appl Microbiol Biotechnol 90(2):573–581PubMedCrossRefGoogle Scholar
  239. Yun J, Ryu S (2005) Screening for novel enzymes from metagenome and SIGEX, as a way to improve it. Microb Cell Factories 4(1):8CrossRefGoogle Scholar
  240. Zhang J, Chiodini R, Badr A, Zhang G (2011) The impact of next-generation sequencing on genomics. J Genet Genomics 38(3):95–109PubMedPubMedCentralCrossRefGoogle Scholar
  241. Zhang W, Li F, Nie L (2010) Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology 156(2):287–301PubMedCrossRefGoogle Scholar
  242. Zheng H, Wu H (2010) Short prokaryotic DNA fragment binning using a hierarchical classifier based on linear discriminant analysis and principal component analysis. J Bioinforma Comput Biol 8(06):995–1011CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Habibu Aliyu
    • 1
  • Pieter De Maayer
    • 2
  • Sara Sjöling
    • 3
  • Donald A. Cowan
    • 1
    Email author
  1. 1.Centre for Microbial Ecology and GenomicsUniversity of PretoriaPretoriaSouth Africa
  2. 2.School of Molecular and Cell BiologyUniversity of the WitwatersrandJohannesburgSouth Africa
  3. 3.School of Natural Sciences, Technology and Environmental StudiesSodertorn UniversityHuddingeSweden

Personalised recommendations