Molecular Structure of Lipopolysaccharides of Cold-Adapted Bacteria

  • Maria Michela CorsaroEmail author
  • Angela Casillo
  • Ermenegilda Parrilli
  • Maria Luisa Tutino


Cold-adapted Gram-negative bacteria inhabit snow, ice water, and frozen grounds and are perfectly adapted to live at very low temperatures. They have evolved several adaptation strategies, some of which concern the cellular membrane. Bacterial outer membrane, that functions as a selective barrier allowing the influx of nutrients and confers protection to the cell, is also considered a primary sensor of the cold. It is well known that one of the main responses to cold concerning the cell membrane is the increment of fluidity and the upregulation of genes encoding for proteins and membrane transporters. In this context, also the lipopolysaccharides, macromolecules constituting approximately 75% of the outer surface, may be modified in their structure in response to the conditions prevailing in the environment. In this chapter, for the first time, the role played by lipopolysaccharides structures in response to cold adaptation is analyzed. Some structural features of the lipopolysaccharides are modified as a consequence of living at low temperatures, thus confirming that all the outer membrane components are involved in adaptation and survival molecular mechanisms.


  1. Alexander C, Rietschel ET (2001) Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 7:167–202PubMedGoogle Scholar
  2. Arbatsky NP, Kondakova AN, Shashkov AS et al (2010) Structure of the O-antigen of Acinetobacter lwoffii EK30A; identification of D-homoserine, a novel non-sugar component of bacterial polysaccharides. Org Biomol Chem 8:3571–3577CrossRefPubMedGoogle Scholar
  3. Ayala-del-Río HL, Chain PS, Grzymski JJ et al (2010) The genome sequence of Psychrobacter arcticus 273-4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl Environ Microbiol 76:2304–2312CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bakermans C, Ayala-del-Rio HL, Ponder MA et al (2006) Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int J Syst Evol Microbiol 56:1285–1291CrossRefPubMedGoogle Scholar
  5. Baumann L, Baumann P, Mandel M et al (1972) Taxonomy of aerobic marine Eubacteria. J Bacteriol 110:402–429PubMedPubMedCentralGoogle Scholar
  6. Benediktsdottir E, Helgason S, Sigurjonsdottir H (1998) Vibrio spp. isolated from salmonids with shallow skin lesions and reared at low temperature. J Fish Dis 21:19–28CrossRefGoogle Scholar
  7. Bernardet JF, Nakagawa Y (2006) An introduction to the family Flavobacteriaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 7, 3rd edn. Springer, New York, NY, pp 455–480CrossRefGoogle Scholar
  8. Boetius A, Anesio AM, Deming JW et al (2015) Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 13:677–690CrossRefPubMedGoogle Scholar
  9. Bosi E, Fondi M, Maida I et al (2015) Genome-scale phylogenetic and DNA composition analyses of Antarctic Pseudoalteromonas bacteria reveal inconsistencies in current taxonomic affiliation. Hydrobiologia 761(1):85–95CrossRefGoogle Scholar
  10. Bowman JP (2005) The genus Psychrobacter. In: Dworkin M (ed) The prokaryotes: an evolving electronic resource for the microbiological community, vol 6, 3rd edn. Springer, New York, NY, pp 920–930Google Scholar
  11. Bowman JP, Gosink JJ, McCammon SA et al (1998) Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid. Int J Syst Bacteriol 48:1171–1180CrossRefGoogle Scholar
  12. Cao-Hoang L, Dumont F, Marechal PA et al (2010) Inactivation of Escherichia coli and Lactobacillus plantarum in relation to membrane permeabilization due to rapid chilling followed by cold storage. Arch Microbiol 192:299–305CrossRefPubMedGoogle Scholar
  13. Carillo S, Pieretti G, Parrilli E et al (2011) Structural investigation and biological activity of the lipooligosaccharide from the psychrophilic bacterium Pseudoalteromonas haloplanktis TAB 23. Chem Eur J 17:7053–7060CrossRefPubMedGoogle Scholar
  14. Carillo S, Pieretti G, Lindner B et al (2013) Structural characterization of the core oligosaccharide isolated from the lipopolysaccharide of the psychrophilic bacterium Colwellia psychrerythraea Strain 34H. Eur J Org Chem:3771–3779Google Scholar
  15. Carillo S, Pieretti G, Bedini E et al (2014) Structural investigation of the antagonist LPS from the cyanobacterium Oscillatoria planktothrix FP1. Carbohydr Res 388:73–80CrossRefPubMedGoogle Scholar
  16. Carlson RW, Krishnaiah B (1992) Structures of the oligosaccharides obtained from the core regions of the lipopolysaccharides of Bradyhizobium japonicum 61A101c and its symbiotically defective lipopolysaccharide mutant, JS314. Carbohydr Res 231:205–219CrossRefPubMedGoogle Scholar
  17. Caroff M, Karibian D (2003) Structure of bacterial lipopolysaccharides. Carbohydr Res 338:2431–2447CrossRefPubMedGoogle Scholar
  18. Carty SM, Sreekumar KR, Raetz CRH et al (1999) Effect of cold shock on lipid A biosynthesis in Escherichia coli. Induction At 12 degrees C of an acyltransferase specific for palmitoleoyl-acyl carrier protein. J Biol Chem 274:9677–9685CrossRefPubMedGoogle Scholar
  19. Casanueva A, Tuffin M, Cary C et al (2010) Molecular adaptations to psychrophily: the impact of ‘omic’ technologies. Trends Microbiol 18:374–381CrossRefPubMedGoogle Scholar
  20. Casillo A, Parrilli E, Sannino F et al (2015) Structural investigation of the oligosaccharide portion isolated from the lipooligosaccharide of the permafrost psychrophile Psychrobacter arcticus 273-4. Mar Drugs 13:4539–4555CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chattopadhyay K (2006) Mechanism of bacterial adaptation to low temperature. J Biosci 31(1):157–165CrossRefPubMedGoogle Scholar
  22. Corsaro MM, Lanzetta R, Parrilli E et al (2001) Structural investigation on the lipooligosaccharide fraction of psychrophilic Pseudoalteromonas haloplanktis TAC 125 bacterium. Eur J Biochem 268:5092–5097CrossRefPubMedGoogle Scholar
  23. Corsaro MM, Dal Piaz F, Lanzetta R et al (2002) Lipid A structure of Pseudoalteromonas haloplanktis TAC 125: use of electrospray ionization tandem mass spectrometry for the determination of fatty acid distribution. J Mass Spectrom 37(5):481–488CrossRefPubMedGoogle Scholar
  24. Corsaro MM, Pieretti G, Lindner B et al (2008) Highly phosphorylated core oligosaccaride structures from cold-adapted Psychromonas arctica. Chem Eur J 14:9368–9376CrossRefPubMedGoogle Scholar
  25. Crump EM, Perry MB, Clouthier SC et al (2001) Antigenic characterization of the fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 67:750–759CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ewert M, Deming JW (2013) Sea ice microorganisms: environmental constraints and extracellular responses. Biology 2(2):603–628CrossRefPubMedPubMedCentralGoogle Scholar
  27. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208CrossRefPubMedGoogle Scholar
  28. Feller G, Lonhienne T, Deroanne C et al (1992) Purification, characterization, and nucleotide sequence of the thermolabile alpha-amylase from the antarctic psychrotroph Alteromonas haloplanctis A23. J Biol Chem 267:5217–5221PubMedGoogle Scholar
  29. Forsberg LS, Carlson RW (1998) The structures of the lipopolysaccharides from Rhizobium etli Strains CE358 and CE359. J Biol Chem 273:2747–2757CrossRefPubMedGoogle Scholar
  30. Galanos C, Luderitz O, Westphal O (1969) A new method for the extraction of R lipopolysaccharides. Eur J Biochem 9:245–249CrossRefPubMedGoogle Scholar
  31. Gerischer U (2008) Acinetobacter molecular biology. Int Microbiol 11:147–150Google Scholar
  32. Gerwig GJ, Kamerling JP, Vliegenthart JF (1979) Determination of the absolute configuration of monosaccharides in complex carbohydrates by capillary GLC. Carbohydr Res 77:10–17CrossRefPubMedGoogle Scholar
  33. Gilichinsky D, Vorobyova EA, Erokhina LG et al (1992) Long-term preservation of microbial ecosystems in permafrost. Adv Space Res 12:255–263CrossRefPubMedGoogle Scholar
  34. Graumann PL, Marahiel MA (1999) Cold shock response in Bacillus subtilis. J Mol Microbiol Biotechnol 1:203–209PubMedGoogle Scholar
  35. Hakamori S (1964) A rapid permethylation of glycolipid and polysaccharide catalysed by methyl sulfinil carbanion in dimethyl sulfoxide. J Biochem (Tokyo) 55:205–208Google Scholar
  36. Hidetoshi U (2014) The family Moritellaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: gammaproteobacteria. Springer, Berlin, pp 477–489Google Scholar
  37. Holst O (2000) Deacylation of lipopolysaccharides and isolation of oligosaccharide phosphates. Methods Mol Biol 145:345–353PubMedGoogle Scholar
  38. Holst O, Molinaro A (2009) Core oligosaccharide and lipid A components of lipopolysaccharides. In: Moran A, Brennan P, Holst O, von Itszstein M (eds) Microbial glycobiology:structures relevance and applications. Elsevier, San Diego, CA, pp 29–56Google Scholar
  39. Holst O, Ulmer AJ, Brade H et al (1996) Biochemistry and cell biology of bacterial endotoxins. FEMS Immunol Med Microbiol 16:83–104CrossRefPubMedGoogle Scholar
  40. Jansson PE (1999) The chemistry of O-polysaccharide chains in bacterial lipopolysaccharides. In: Brade H, Morrison DC, Opal S, Vogel S (eds) Endotoxin in health and disease. Marcel Dekker, New York, NY, pp 155–178Google Scholar
  41. Kawasaki K, Nogi Y, Hishinuma M et al (2002) Psychromonas marina sp. nov., a novel halophilic, facultatively psychrophilic bacterium isolated from the coast of the Okhotsk Sea. Int J Syst Evol Microbiol 52:1455–1459PubMedGoogle Scholar
  42. Kenne L, Lindberg B (1983) Bacterial polysaccharides. In: Aspinall GO (ed) The polysaccharides. Academic Press, New York, NY, pp 287–363CrossRefGoogle Scholar
  43. Kilcoyne M, Perepelov AV, Tomshich SV et al (2004) Structure of the O-polysaccharide of Idiomarina zobellii KMM 231T containing two unusual amino sugars with the free amino group, 4-amino-4,6-dideoxy-D-glucose and 2-amino-2-deoxy-L-guluronic acid. Carbohydr Res 339:477–482CrossRefPubMedGoogle Scholar
  44. Knirel YA (2011) Structure of O-antigens. In: Knirel YA, Valvano MA (eds) Bacterial lipopolysaccharides. Springer, Vienna, pp 41–115CrossRefGoogle Scholar
  45. Knirel YA, Widlman G, Senchenkova SN et al (1997) Structural studies on the short-chain lipopolysaccharide of Vibrio cholerae O139 Bengal. Eur J Biochem 247:402–410CrossRefPubMedGoogle Scholar
  46. Kondakova M, Novototskaya-Vlasova KA, Arbatsky NP et al (2012a) Structure of the O-specific polysaccharide from the lipopolysaccharide of Psychrobacter cryohalolentis K5T containing a 2,3,4-triacetamido-2,3,4-trideoxy-L-arabinose Moiety. J Nat Prod 75:2236–2240CrossRefPubMedGoogle Scholar
  47. Kondakova M, Novototskaya-Vlasova KA, Drutskaya MS et al (2012b) Structure of the O-polysaccharide chain of the lipopolysaccharide of Psychrobacter muricolla 2pST isolated from overcooled water brines within permafrost. Carbohydr Res 349:78–81CrossRefPubMedGoogle Scholar
  48. Kumar GS, Jagannadham MV, Ray MK (2002) Low-temperature-induced changes in composition and fluidity of lipopolysaccharides in the antarctic psychrotrophic bacterium Pseudomonas syringae. J Bacteriol 184:6746–6749CrossRefPubMedGoogle Scholar
  49. Leontein K, Lindberg B, Lönngren J (1978) Assignment of absolute configuration of sugars by g.l.c. of their acetylated glycosides from chiral alcohols. Carbohydr Res 62:359–362CrossRefGoogle Scholar
  50. Lüderitz O, Risse R, Schlecht S et al (1966) Structural relationship of Salmonella O and R antigens. Ann N Y Acad Sci 133:349–374CrossRefPubMedGoogle Scholar
  51. Lüderitz O, Freudenberg MA, Galanos C et al (1982) Lipopolysaccharides of Gram-negative bacteria. In: Razin S, Rottem S (eds) Current topics in membranes and transport. Academic Press, New York, NY, pp 79–51Google Scholar
  52. MacLean LL (2001) The structure of the lipopolysaccharide O-antigen produced by Flavobacterium psychrophilum (259-93). Eur J Biochem 268:2710–2716CrossRefPubMedGoogle Scholar
  53. Maruyama A, Honda D, Yamamoto H et al (2000) Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov. Int J Syst Evol Microbiol 50:835–846CrossRefPubMedGoogle Scholar
  54. Masoud H, Perry MB, Brisson JB et al (1994) Structural elucidation of the backbone oligosaccharide from the lipopolysaccharide of Moraxella catarrhalis serotype A. Can J Chem 72:1466–1477CrossRefGoogle Scholar
  55. McKay CP (2014) Requirements and limits for life in the context of exoplanets. Proc Natl Acad Sci 111:12628–12633CrossRefPubMedPubMedCentralGoogle Scholar
  56. Methé BA, Nelson KE, Deming JW et al (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci U S A 102:10913–10918CrossRefPubMedPubMedCentralGoogle Scholar
  57. Montminy SW, Khan N, McGrath S et al (2006) Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat Immunol 7:1066–1073CrossRefPubMedGoogle Scholar
  58. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656CrossRefPubMedPubMedCentralGoogle Scholar
  59. Nogi Y, Hosoya S, Kato C et al (2004) Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol 54:1627–1631CrossRefPubMedGoogle Scholar
  60. Phillips N, Adin DM, Stabb EV et al (2011) The lipid A from Vibrio fischeri lipopolysaccharide. A unique structure bearing a phosphoglycerol mojety. J Biol Chem 286(24):21203–21219CrossRefPubMedPubMedCentralGoogle Scholar
  61. Raetz CRH, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700CrossRefPubMedGoogle Scholar
  62. Ray MK, Kumar GS, Shivaji S (1994) Phosphorylation of lipopolysaccharides in the Antarctic psychrotroph Pseudomonas syringae: a possible role in temperature adaptation. J Bacteriol 176:4243–4249CrossRefPubMedPubMedCentralGoogle Scholar
  63. Romanenko LA, Schumann P, Rohde M et al (2002) Psychrobacter submarinus sp. nov. and Psychrobacter marincola sp. nov., psychrophilic halophiles from marine environments. Int J Syst Evol Microbiol 52:1291–1297PubMedGoogle Scholar
  64. Silipo A, Leone S, Lanzetta R et al (2004) The complete structure of the lipooligosaccharide from the halophilic bacterium Pseudoalteromonas issachenkonii KMM 3549T. Carbohydr Res 339:1985–1993CrossRefPubMedGoogle Scholar
  65. Sweet CR, Alpuche GM, Landis CA et al (2014) Endotoxin structures in the psychrophiles Psychromonas marina and Psychrobacter cryohalolentis contain distinctive acyl features. Mar Drugs 12:4126–4147CrossRefPubMedPubMedCentralGoogle Scholar
  66. Sweet CR, Watson RE, Landis CA et al (2015) Temperature-dependence of lipid A acyl structure in Psychrobacter cryohalolentis and Arctic isolates of Colwellia hornerae and Colwellia piezophila. Mar Drugs 13:4701–4720CrossRefPubMedPubMedCentralGoogle Scholar
  67. Verma DK, Rathore G (2015) New host record of five Flavobacterium species associated with tropical fresh water farmed fishes from North India. Braz J Microbiol 46(4):969–976CrossRefPubMedPubMedCentralGoogle Scholar
  68. Vinogradov EV, Bock K, Holst O et al (1995) The Structure of the lipid A-core region of the lipopolysaccharides from Vibrio cholerae O1 smooth strain 569B (Inaba) and rough mutant strain 95R (Ogawa). Eur J Biochem 233:152–158CrossRefPubMedGoogle Scholar
  69. Volk WA, Salomonsky NL, Hunt D (1972) Isolation of 4,7-anhydro- and 4,8-anhydro-3-deoxy-octulosonic acid followixg acid hydrolysis of Xanthomonas sinensis lipopolysaccharide. J Biol Chem 247(12):3881–3388PubMedGoogle Scholar
  70. Westphal O, Luderitz O, Bister F (1952) Über die Extraktion von Bakterien mit Phenol/Wasser. Z Naturforsch 7b:148–155Google Scholar
  71. Westphal O, Lüderitz O, Galanos C et al (1986) The story of bacterial endotoxin. In: Chedid L, Hadden JW, Spreafico F (eds) Advances in immunopharmacology. Pergamon Press, Oxford, pp 13–34CrossRefGoogle Scholar
  72. Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75:39–68CrossRefPubMedGoogle Scholar
  73. Wilkinson SC (1977) Composition and structure of bacterial lipopolysaccharides. In: Sutherland IW (ed) Surface carbohydrates of the prokaryotic cell. Academic Press, New York, Ny, pp 97–105Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Maria Michela Corsaro
    • 1
    Email author
  • Angela Casillo
    • 1
  • Ermenegilda Parrilli
    • 1
  • Maria Luisa Tutino
    • 1
  1. 1.Department of Chemical SciencesUniversity of Naples Federico IINaplesItaly

Personalised recommendations