Advertisement

The Role of Exopolysaccharides in Microbial Adaptation to Cold Habitats

  • Jody W. DemingEmail author
  • Jodi N. Young
Chapter

Abstract

The cellular exterior that a single-celled microorganism presents to its surroundings marks its first line of defense against environmental pressures, from energy deprivation, shifts in ionic strength, and thermal stress to viral and higher-order attack. The extracellular production of complex sugar compounds (extracellular polysaccharides or exopolysaccharides), whether to provide an individual, multipurpose cell coating or be released for consortial arrangements such as biofilm formation, is a hallmark of microbial life in soil, water, and host (plant and animal)-associated environments. The basic features of exopolysaccharides and their functions pertain to all manner of environments and forms of microbial adaptation, regardless of ambient temperature. At very low temperatures, however, where a phase change comes into play, special considerations arise. In this chapter, which represents an update and reframing of previous work [Krembs and Deming (Psychrophiles: from biodiversity to biotechnology. Springer, 2008)], we pay particular attention to the role of microbially produced exopolysaccharides at subfreezing temperatures. Given recent advances, we have kept the focus on sea ice, that frozen yet brine-filled and exopolysaccharide-rich environment where the physical, chemical, and viral challenges present in the space inhabited by microbes greatly influence their ability to survive and evolve. In the last decade, the study of exopolysaccharides in sea ice has advanced on several fronts, from ocean-scale analyses of their microalgal production and iron-storage capacity to biochemical analyses of their novel ice-binding functions in bacteria. The field has thus moved closer to realizing the pervasive importance of exopolysaccharides in very cold environments, including their biogeochemical, evolutionary, and biotechnological potential.

Notes

Acknowledgments

We acknowledge support from NSF (ARC-1203267 to JWD), the UW Astrobiology Program, and the School of Oceanography, through the Karl M. Banse Endowed Professorship (to JWD) and start-up funds (to JNY), to develop this chapter. Numerous colleagues have influenced our thinking, but we especially thank Christopher Krembs, Marcela Ewert, Eric Collins, and Jeff Bowman for their contributions to the study of EPS in the cold and Shelly Carpenter for help with graphics and many EPS measurements over the years.

References

  1. Aletsee L, Jahnke J (1992) Growth and productivity of the psychrophilic marine diatoms Thalassiosira antarctica Comber and Nitzschia frigida Grunow in batch cultures at temperatures below the freezing point of sea water. Polar Biol 11:643–647CrossRefGoogle Scholar
  2. Alldredge AL, Passow U, Logan BU (1993) The abundance and significance of a class of large, transparent organic particles in the ocean. Deep Sea Res 40:1131–1140CrossRefGoogle Scholar
  3. Allegretto EA, Caple G, Culbertoson LB (1992) Inhibition of ice nucleation by synthetic polymers. ABS PAP ACS 183:19Google Scholar
  4. Anesio AM, Mindl B, Laybourn-Parry J, Hodson AJ, Sattler B (2007) Viral dynamics in cryoconite holes on a High Arctic glacier (Svalbard). J Geophys Res 112:G04S31CrossRefGoogle Scholar
  5. Aslam SN, Cresswell-Maynard T, Thomas DN, Underwood GJC (2012) Production and characterization of the intra- and extracellular carbohydrates and polymeric substances (EPS) of three sea-ice diatom species, and evidence for a cryoprotective role for EPS. J Phycol 48:1494–1509PubMedCrossRefGoogle Scholar
  6. Aslam SN, Michel C, Niemi A, Underwood GJC (2016) Patterns and drivers of carbohydrate budgets in ice algal assemblages from first year Arctic sea ice. LimnolOceanogr 61:919–937Google Scholar
  7. Baker MG, Lalonde SV, Konhauser KO, Foght JM (2010) Role of extracellular polymeric substances in the surface chemical reactivity of Hymenobacter aerophilus, a psychrotolerant bacterium. Appl Environ Microbiol 76:102–109PubMedCrossRefGoogle Scholar
  8. Barber DG, Ehn JK, Pućko M, Rysgaard S, Deming JW, Bowman JS, Papakyriakou T, Galley RJ, Søgaard DH (2014) Frost flowers on young Arctic sea ice: the climatic, chemical, and microbial significance of an emerging ice type. J Geophys Res Atmos 27:11,593–11,612CrossRefGoogle Scholar
  9. Battin TJ, Sengschmitt D (1999) Linking sediment biofilms, hydrodynamics, and river bed clogging: evidence from a large river. Microb Ecol 37:185–196PubMedCrossRefGoogle Scholar
  10. Blanc G, Agarkova I, Grimwood J, Kuo A, Brueggeman A, Dunigan DD, Gurnon J, Ladunga I, Lindquist E, Lucas S, Pangilinan J, Pröschold T, Salamov A, Schmutz J, Weeks D, Yamada T, Lomsadze A, Borodovsky M, Claverie J-M, Grigoriev IV, Van Etten JL (2012) The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 13:R39PubMedPubMedCentralCrossRefGoogle Scholar
  11. Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ (2015) Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 13:677–690. doi: 10.1038/nrmicro3522 PubMedCrossRefGoogle Scholar
  12. Bowman JS, Deming JW (2010) Elevated bacterial abundance and exopolymers in saline frost flowers and implications for atmospheric chemistry and microbial dispersal. J Geophys Lett 37:L13501. doi: 10.1029/2010GL043020 CrossRefGoogle Scholar
  13. Bowman JS, Deming JW (2016) Evidence for broad, wind-driven distribution of bacterial phylotypes in McMurdo Sound, Antarctica. Polar Biol. doi: 10.1007/s00300-016-1921-2 Google Scholar
  14. Boyd PW, Ellwood MJ (2010) The biogeochemical cycle of iron in the ocean. Nat Geosci 3:675–682CrossRefGoogle Scholar
  15. Boyd PW, Watson AJ, Law CS, Abraham ER, Trull T, Murdoch R, Bakker DCE, Bowie AR, Buesseler KO, Chang H, Charette M, Croot P, Downing K, Frew R, Gall M, Hadfield M, Hall J, Harvey M, Jameson G, LaRoche J, Liddicoat M, Ling R, Maldonado MT, McKay RM, Nodder S, Pickmere S, Pridmore R, Rintoul S, Safi K, Sutton P, Strzepek R, Tanneberger K, Turner S, Waite A, Zeldis J (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702PubMedCrossRefGoogle Scholar
  16. Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241PubMedCrossRefGoogle Scholar
  17. Carillo S, Casillo A, Pieretti G, Parrilli E, Sannino F, Bayer-Giraldi M, Cosconati S, Novellino E, Ewert M, Deming JW, Lanzetta R (2015) A unique capsular polysaccharide structure from the psychrophilic marine bacterium Colwellia psychrerythraea 34H that mimics antifreeze (glyco) proteins. J Am Chem Soc 137(1):179–189PubMedCrossRefGoogle Scholar
  18. Casillo A, Parrilli E, Sannino F, Mitchell DE, Gibson MI, Marino G, Lanzetta R, Parrilli M, Cosconati S, Novellino E, Randazzo A (2017) Structure-activity relationship of the exopolysaccharide from a psychrophilic bacterium: a strategy for cryoprotection. Carbohydr Polym 156:364–371PubMedCrossRefGoogle Scholar
  19. Causse B, Spadini L, Sarret G, Faure A, Travelet C, Madern D, Delolme C (2016) Xanthan exopolysaccharide: Cu2+ complexes affected from the pH-dependent conformational state: implications for environmentally relevant biopolymers. Environ Sci Technol 50:3477–3485PubMedCrossRefGoogle Scholar
  20. Chrismas NAM, Barker G, Anesio AM, Sánchez-Baracaldo P (2016) Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium Phormidesmis priestleyi BC1401. BMC Genomics 17:1–14CrossRefGoogle Scholar
  21. Colangelo-Lillis JR, Deming JW (2013) Genomic analysis of cold-active Colwelliaphage 9A and psychrophilic phage-host interactions. Extremophiles 17:99–114. doi: 10.1007/s00792-012-0497-1 PubMedCrossRefGoogle Scholar
  22. Colangelo-Lillis J, Eicken H, Carpenter SD, Deming JW (2016) Evidence for marine origin and microbial-viral habitability of sub-zero hypersaline aqueous inclusions within permafrost near Barrow, Alaska. FEMS Microbiol Ecol 92(5.) fiw053. doi: 10.1093/femsec/fiw053
  23. Collins RE, Deming JW (2011a) Abundant dissolved genetic material in Arctic sea ice, Part I: Extracellular DNA. Polar Biol 34:1819–1830. doi: 10.1007/s00300-011-1041-y CrossRefGoogle Scholar
  24. Collins RE, Deming JW (2011b) Abundant dissolved genetic material in Arctic sea ice, Part II: Virus dynamics during autumn freeze-up. Polar Biol 34:1831–1841. doi: 10.1007/s00300-011-1008-z CrossRefGoogle Scholar
  25. Collins RE, Deming JW (2013) Identification of an inter-Order lateral gene transfer event enabling the catabolism of compatible solutes by Colwellia spp. Extremophiles 17(4):601–610PubMedPubMedCentralCrossRefGoogle Scholar
  26. Collins RE, Carpenter SD, Deming JW (2008) Spatial heterogeneity and temporal dynamics of particles, bacteria, and pEPS in Arctic winter sea ice. J Mar Syst 74(3):902–917CrossRefGoogle Scholar
  27. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745PubMedCrossRefGoogle Scholar
  28. Dash JG, Rempel AW, Wettlaufer JS (2006) The physics of premelted ice and its geophysical consequences. Rev Mod Phys 78(3):695–741CrossRefGoogle Scholar
  29. Davies PL (2014) Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth. Trends Biochem Sci 39(11):548–555PubMedCrossRefGoogle Scholar
  30. de Baar HJW, de Jong JTM (2001) Distributions, sources and sinks of iron in seawater. In: Turner DR, Hunter KA (eds) The biogeochemistry of iron in seawater. Wiley, New York, NY, pp 123–254Google Scholar
  31. De Jong JTM, Stammerjohn SE, Ackley SF, Tison JL, Mattielli N, Schoemann V (2015) Sources and fluxes of dissolved iron in the Bellingshausen Sea (West Antarctica): the importance of sea ice, icebergs and the continental margin. Mar Chem 177(Part 3):518–535CrossRefGoogle Scholar
  32. de los Ríos A, Cary C, Cowan D (2014) The spatial structures of hypolithic communities in the Dry Valleys of East Antarctica. Polar Biol 37:1823–1833CrossRefGoogle Scholar
  33. De Philippis R, Colica G, Micheletti E (2011) Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Appl Microbiol Biotechnol 92:697–708PubMedCrossRefGoogle Scholar
  34. Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Annu Rev 28:73–153Google Scholar
  35. Decho AW, Lopez GR (1993) Exopolymer microenvironments of microbial flora: multiple and interactive effects on trophic relationships. Limnol Oceanogr 38:1633–1645CrossRefGoogle Scholar
  36. DeMaere MZ, Williams TJ, Allen MA, Brown MV, Gibson JA, Rich J, Lauro FM, Dyall-Smith M, Davenport KW, Woyke T, Kyrpides NC, Tringe G, Cavicchioli R (2013) High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake. Proc Natl Acad Sci USA 110(42):16939–16944PubMedPubMedCentralCrossRefGoogle Scholar
  37. Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 3(5):301–309CrossRefGoogle Scholar
  38. Deming JW (2007) Life in ice formations at very cold temperatures. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 133–145CrossRefGoogle Scholar
  39. Deming JW (2010) Sea ice bacteria and viruses. In: Thomas DN, Dieckmann GS (eds) Sea ice – an introduction to its physics, chemistry, biology and geology, 2nd edn. Blackwell, Oxford, pp 247–282Google Scholar
  40. Deming JW, Collins RE (2017) Sea ice as a habitat for bacteria, archaea and viruses. In: Thomas DN (ed) Sea ice – an introduction to its physics, chemistry, biology and geology, 3rd edn. Wiley. in pressGoogle Scholar
  41. Deming JW, Eicken H (2007) Life in ice. In: Sullivan WT, Baross JA (eds) Planets and life: the emerging science of astrobiology. Cambridge University Press, Cambridge, pp 292–312Google Scholar
  42. Díez B, Bergman B, Pedrós-Alió C, Antó M, Snoeijs P (2012) High cyanobacterial nifH gene diversity in Arctic seawater and sea ice brine. Environ Microbiol Rep 4:360–366PubMedCrossRefGoogle Scholar
  43. Dolev MB, Bernheim R, Guo S, Davies PL, Braslavsky I (2016) Putting life on ice: bacteria that bind to frozen water. J Roy Soc Interface 13(121):20160210CrossRefGoogle Scholar
  44. D’souza NA, Kawarasaki Y, Gantz JD, Lee RE, Beall BF, Shtarkman YM, Kocer ZA, Rogers SO, Wildschutte H, Bullerjahn GS, McKay RM (2013) Diatom assemblages promote ice formation in large lakes. ISME J 7(8):1632–1640PubMedPubMedCentralCrossRefGoogle Scholar
  45. Engel A, Borchard C, Piontek J, Schulz K, Riebesell U, Bellerby R (2013) CO2 increases 14C primary production in an Antarctic plankton community. Biogeosciences 10:1291–1298CrossRefGoogle Scholar
  46. Ewert M, Deming JW (2011) Selective retention in saline ice of extracellular polysaccharides produced by the cold-adapted marine bacterium Colwellia psychrerythraea strain 34H. Ann Glaciol 52(57):111–117CrossRefGoogle Scholar
  47. Ewert M, Deming JW (2013) Sea ice microorganisms: environmental constraints and extracellular responses. Biology 2(2):603–628PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ewert M, Deming JW (2014) Bacterial responses to fluctuations and extremes in temperature and brine salinity at the surface of Arctic winter sea ice. FEMS Microbiol Ecol 89(2):476–489PubMedCrossRefGoogle Scholar
  49. Ewert M, Carpenter SD, Colangelo-Lillis J, Deming JW (2013) Bacterial and extracellular polysaccharide content of brine-wetted snow over Arctic winter first-year sea ice. J Geophys Res-Oceans 118(2):726–735CrossRefGoogle Scholar
  50. Fazio SA, Uhlinger DJ, Parker JH, White DC (1982) Estimations of uronic acids as quantitative measures of extracellular and cell wall polysaccharide polymers from environmental samples. Appl Environ Microbiol 47:135–143Google Scholar
  51. Firth E, Carpenter SD, Sørensen HL, Collins RE, Deming JW (2016) Bacterial use of choline to tolerate salinity shifts in sea-ice brines. Elem Sci Anth 4(1):000120. doi: 10.12952/journal.elementa.000120 CrossRefGoogle Scholar
  52. Freitas F, Alves VD, Reis MA (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29(8):388–398PubMedCrossRefGoogle Scholar
  53. Galgani L, Piontek J, Engel A (2016) Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts. Sci Rep 6:29465PubMedPubMedCentralCrossRefGoogle Scholar
  54. Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27:395–409CrossRefGoogle Scholar
  55. Gledhill M, Buck K (2012) The organic complexation of iron in the marine environment: a review. Front Microbiol 3:69PubMedPubMedCentralGoogle Scholar
  56. Gledhill M, van den Berg CMG (1994) Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Mar Chem 47:41–54CrossRefGoogle Scholar
  57. Goff HD, Hartel RW (2013) Ice cream structure. In: Ice cream. Springer, New York, NY, pp 313–352CrossRefGoogle Scholar
  58. Grannas AM, Pagano LP, Pierce BC, Bobby R, Fede A (2014) Role of dissolved organic matter in ice photochemistry. Environ Sci Technol 48:10725–10733PubMedCrossRefGoogle Scholar
  59. Gügi B, Le Costaouec T, Burel C, Lerouge P, Helbert W, Bardor M (2015) Diatom-specific oligosaccharide and polysaccharide structures help to unravel biosynthetic capabilities in diatoms. Mar Drugs 13:5993–6018PubMedPubMedCentralCrossRefGoogle Scholar
  60. Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, Plemenitaš A (2003) Extremophilic fungi in arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth 28:1273–1278CrossRefGoogle Scholar
  61. Gutierrez T, Biller DV, Shimmield T, Green DH (2012) Metal binding properties of the EPS produced by Halomonas sp. TG39 and its potential in enhancing trace element bioavailability to eukaryotic phytoplankton. Biometals 25:1185–1194PubMedCrossRefGoogle Scholar
  62. Hart TD, Chamberlain AHL, Lynch JM, Newling B, McDonald PJ (1999) A stray field magnetic resonance study of water diffusion in bacterial exopolysaccharides. Enzyme Microb Technol 24:339–347CrossRefGoogle Scholar
  63. Hart TD, Lynch JM, Chamberlain AHL (2001) Anion exclusion in microbial and soil polysaccharides. Biol Fertil Soil 34:201–209CrossRefGoogle Scholar
  64. Hassler CS, Alasonati E, Mancuso Nichols CA, Slaveykova VI (2011) Exopolysaccharides produced by bacteria isolated from the pelagic Southern Ocean – role in Fe binding, chemical reactivity, and bioavailability. Mar Chem 123:88–98CrossRefGoogle Scholar
  65. Hassler CS, Norman L, Mancuso Nichols CA, Clementson LA, Robinson C, Schoemann V, Watson RJ, Doblin MA (2015) Iron associated with exopolymeric substances is highly bioavailable to oceanic phytoplankton. Mar Chem 173:136–147CrossRefGoogle Scholar
  66. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466PubMedPubMedCentralCrossRefGoogle Scholar
  67. Haynes K, Hofmann TA, Smith CJ, Ball AS, Underwood GJC, Osborn AM (2007) Diatom-derived carbohydrates as factors affecting bacterial community composition in estuarine sediments. Appl Environ Microbiol 73:6112–6124PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hill DR, Keenan TW, Helm RF, Potts M, Crowe LM, Crowe JH (1997) Extracellular polysaccharide of Nostoc commune (Cyanobacteria) inhibits fusion of membrane vesicles during desiccation. J Appl Phycol 9:237–248CrossRefGoogle Scholar
  69. Hoagland KD, Rosowski JR, Gretz MR, Roemer SR (1993) Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. J Phycol 29:537–566CrossRefGoogle Scholar
  70. Hodson A, Bøggild C, Hanna E, Huybrechts P, Langford H, Cameron K, Houldsworth A (2010) The cryoconite ecosystem on the Greenland ice sheet. Ann Glaciol 51:123–129CrossRefGoogle Scholar
  71. Huston AL, Krieger-Brockett BB, Deming JW (2000) Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ Microbiol 2(4):383–388PubMedCrossRefGoogle Scholar
  72. Izutsu K, Yoshioka S, Kojima S (1995) Effect of cryoprotectants on the eutectic crystallization of NaCl in frozen solution studied by differential scanning calorimetry (DSC) and broad-line pulsed NMR. Chem Pharm Bull 43:1804–1806CrossRefGoogle Scholar
  73. Janssens J, Meiners KM, Tison J-L, Dieckmann GS, Delille B, Lannuzel D (2016) Incorporation of iron and organic matter into young Antarctic sea ice during its initial growth stages. Elem Sci Anth 4:123CrossRefGoogle Scholar
  74. Juhl AR, Krembs C, Meiners KM (2011) Seasonal development and differential retention of ice algae and other organic fractions in first-year Arctic sea ice. Mar Ecol Prog Ser 436:1–16. doi: 10.3354/meps09277 CrossRefGoogle Scholar
  75. Jittawuttipoka T, Planchon M, Spalla O, Benzerara K, Guyot F, Cassier-Chauvat C, Chauvat F (2013) Multidisciplinary evidences that Synechocystis PCC6803 exopolysaccharides operate in cell sedimentation and protection against salt and metal stresses. PLoS ONE 8:e55564PubMedPubMedCentralCrossRefGoogle Scholar
  76. Jungblut AD, Hawes I, Mackey TJ, Krusor M, Doran PT, Sumner DY, Eisen JA, Hillman C, Goroncy AK (2016) Microbial mat communities along an oxygen gradient in a perennially ice-covered Antarctic lake. Appl Environ Microbiol 82:620–630PubMedCentralCrossRefGoogle Scholar
  77. Junge K, Krembs C, Deming J, Stierle A, Eicken H (2001) A microscopic approach to investigate bacteria under in-situ conditions in sea-ice samples. Ann Glaciol 33:304–310CrossRefGoogle Scholar
  78. Kehr J-C, Dittmann E (2015) Biosynthesis and function of extracellular glycans in cyanobacteria. Life 5:164–180PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kim SJ, Kim B-G, Park HJ, Yim JH (2016) Cryoprotective properties and preliminary characterization of exopolysaccharide (P-Arcpo 15) produced by the Arctic bacterium Pseudoalteromonas elyakovii Arcpo 15. Prep Biochem Biotechnol 46:261–266PubMedCrossRefGoogle Scholar
  80. Kirst GO, Thiel C, Wolff H, Nothnagel J, Wanzek M, Ulmke R (1991) Dimethylsulfoniopropionate (DMSP) in ice algae and its possible biological role. Mar Chem 35:381–388CrossRefGoogle Scholar
  81. Koerstgens V, Flemming H-C, Wingender J, Borchard W (2001) Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Water Sci Technol 43:49–57Google Scholar
  82. Koh EY, Cowie ROM, Simpson AM, O’Toole R, Ryan KG (2012) The origin of cyanobacteria in Antarctic sea ice:marine or freshwater? Environ Microbiol Rep 4:479–483PubMedCrossRefGoogle Scholar
  83. Krembs C, Deming JW (2008) The role of exopolymers in microbial adaptation to sea ice. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 247–264CrossRefGoogle Scholar
  84. Krembs C, Engel E (2001) Abundance and variability of microorganisms and TEP across the ice-water interface of melting first-year sea-ice in the Laptev Sea (Arctic). Mar Biol 138:173–185CrossRefGoogle Scholar
  85. Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res 49:2163–2181CrossRefGoogle Scholar
  86. Krembs C, Eicken H, Deming JW (2011) Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. Proc Natl Acad Sci U S A 108(9):3653–3658PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lamelas C, Benedetti M, Wilkinson KJ, Slaveykova VI (2006) Characterization of H+ and Cd2+ binding properties of the bacterial exopolysaccharides. Chemosphere 65:1362–1370PubMedCrossRefGoogle Scholar
  88. Lannuzel D, Vancoppenolle M, van der Merwe P, de Jong J, Meiners KM, Grotti M et al (2016) Iron in sea ice: review and new insights. Elem Sci Anth 4:130. doi: 10.12952/journal.elementa.000130 CrossRefGoogle Scholar
  89. Lasa I (2006) Towards the identification of the common features of bacterial biofilm development. Int Microbiol 9:21–28PubMedGoogle Scholar
  90. Lavoie D, Denman K, Michel C (2005) Modeling ice algal growth and decline in a seasonally ice-covered region of the Arctic (Resolute Passage, Canadian Archipelago). J Geophys Res Oceans 110:C11009CrossRefGoogle Scholar
  91. Leroy F, De Vuyst L (2016) Advances in production and simplified methods for recovery and quantification of exopolysaccharides for applications in food and health. J Dairy Sci 99(4):3229–3238PubMedCrossRefGoogle Scholar
  92. Lohmann U (2015) Aerosol-cloud interactions and their radiative forcing. In: North G, Pyle J, Zhang F (eds) Encyclopedia of atmospheric sciences, 2nd edn, vol 1. Academic Press, pp 17–22. doi:  10.1016/B978-0-12-382225-3.00052-9
  93. Lyon BR, Lee PA, Bennett JM, DiTullio GR, Janech MG (2011) Proteomic analysis of a sea-ice diatom: Salinity acclimation provides new insight into the dimethylsulfoniopropionate production pathway. Plant Physiol 157:1926–1941PubMedPubMedCentralCrossRefGoogle Scholar
  94. Mancuso-Nichols CA, Guezennec J, Bowman JP (2005) Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar Biotechnol 7:253–271CrossRefGoogle Scholar
  95. Marx JG, Carpenter SD, Deming JW (2009) Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can J Microbiol 55(1):63–72PubMedCrossRefGoogle Scholar
  96. McConville MJ, Wetherbee R, Bacic A (1999) Subcellular location and composition of the wall and secreted extracellular sulphated polysaccharides/proteoglycans of diatom Stauroneis amphioxys Gregory. Protoplasma 206:188–200CrossRefGoogle Scholar
  97. Meiners K, Brinkmeyer R, Granskog MA, Lindfors A (2004) Abundance, size distribution and bacterial colonization of exopolymer particles in Antarctic sea ice (Bellingshausen Sea). Aquat Microb Ecol 35:283–296CrossRefGoogle Scholar
  98. Meiners KM, Krembs C, Gradinger R (2008) Exopolymer particules: microbial hotspots of enhanced bacterial activity in Arctic fast ice (Chukchi Sea). Aquat Microb Ecol 52:195–207CrossRefGoogle Scholar
  99. Methé BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupa R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou L, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci U S A 102(31):10913–10918PubMedPubMedCentralCrossRefGoogle Scholar
  100. Mock T, Otillar RP, Strauss J, McMullan M, Paajanen P, Schmutz J, Salamov A, Sanges R, Toseland A, Ward BJ, Allen AE (2017) Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 16:1–5Google Scholar
  101. Mukhopadhyay SK, Chatterjee S, Gauri SS, Das SS, Mishra A, Patra M, Ghosh AK, Das AK, Singh SM, Dey S (2014) Isolation and characterization of extracellular polysaccharide Thelebolan produced by a newly isolated psychrophilic Antarctic fungus Thelebolus. Carbohydr Polym 104:204–212PubMedCrossRefGoogle Scholar
  102. Neftel A, Jacob P, Klockow D (1984) Measurements of hydrogen peroxide in polar ice samples. Nature 311:43–45CrossRefGoogle Scholar
  103. Nichols CM, Lardière SG, Bowman JP, Nichols PD, JAE G, Guézennec J (2005) Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb Ecol 49:578–589PubMedCrossRefGoogle Scholar
  104. Niemi A, Michel C, Hille K, Poulin M (2011) Protist assemblages in winter sea ice: setting the stage for the spring ice algal bloom. Polar Biol 34:1803–1817CrossRefGoogle Scholar
  105. Noble AE, Moran DM, Allen AE, Saito MA (2013) Dissolved and particulate trace metal micronutrients under the McMurdo Sound seasonal sea ice: basal sea ice communities as a capacitor for iron. Front Chem 1:25PubMedPubMedCentralCrossRefGoogle Scholar
  106. Norman L, Worms IAM, Angles E, Bowie AR, Nichols CM, Ninh Pham A, Slaveykova VI, Townsend AT, Waite TD, Hassler CS (2015) The role of bacterial and algal exopolymeric substances in iron chemistry. Mar Chem 173:148–161CrossRefGoogle Scholar
  107. Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 11:14002–14015CrossRefGoogle Scholar
  108. Orellana MV, Matrai PA, Leck C, Rauschenberg CD, Lee AM, Coz E (2011) Marine microgels as a source of cloud condensation nuclei in the high Arctic. Proc Natl Acad Sci U S A 108(33):13612–13617PubMedPubMedCentralCrossRefGoogle Scholar
  109. Pannard A, Pédrono J, Bormans M, Briand E, Claquin P, Lagadeuc Y (2016) Production of exopolymers (EPS) by cyanobacteria: impact on the carbon-to-nutrient ratio of the particulate organic matter. Aquat Ecol 50:29–44CrossRefGoogle Scholar
  110. Passow U (2000) Formation of transparent exopolymer particles, TEP, from dissolved precursor material. Mar Ecol Prog Ser 192:1–11CrossRefGoogle Scholar
  111. Paterson H, Laybourn-Parry J (2012) Antarctic sea ice viral dynamics over an annual cycle. Polar Biol 35:491–497CrossRefGoogle Scholar
  112. Percival E, Rahman MA, Weigel H (1980) Chemistry of the polysaccharide of the diatom Coscinodiscus nobilis. Phytochemistry 19:809–811CrossRefGoogle Scholar
  113. Petrich C, Eicken H (2017) Overview of sea ice growth and properties. In: Thomas DN (ed) An introduction to its physics, chemistry, biology and geology, 2nd edn. Wiley. in pressGoogle Scholar
  114. Petrou K, Hill R, Brown CM, Campbell DA, Doblin MA, Ralph PJ (2010) Rapid photoprotection in sea-ice diatoms from the East Antarctic pack ice. Limnol Oceanogr 55:1400–1407CrossRefGoogle Scholar
  115. Poli A, Anzelmo G, Nicolaus B (2010a) Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar Drugs 8(6):1779–1802PubMedPubMedCentralCrossRefGoogle Scholar
  116. Poli A, Anzelmo G, Tommonaro G, Pavlova K, Casaburi A, Nicolaus B (2010b) Production and chemical characterization of an exopolysaccharide synthesized by psychrophilic yeast strain Sporobolomyces salmonicolor AL1 isolated from Livingston Island, Antarctica. Folia Microbiol 55:576–581CrossRefGoogle Scholar
  117. Poulin M, Daugbjerg N, Gradinger R, Ilyash L, Ratkova T, von Quillfeldt C (2011) The pan-Arctic biodiversity of marine pelagic and sea-ice unicellular eukaryotes: a first-attempt assessment. Mar Biodivers 41:13–28CrossRefGoogle Scholar
  118. Raymond JA, Fritsen C, Shen K (2007) An ice binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61:214–221PubMedCrossRefGoogle Scholar
  119. Riedel A, Michel C, Gosselin M (2006) Seasonal study of sea-ice exopolymeric substances on the Mackenzie shelf: implications for transport of sea-ice bacteria and algae. Aquat Microb Ecol 45:195–206CrossRefGoogle Scholar
  120. Riedel A, Michel C, Gosselin M, LeBlanc B (2007) Enrichment of nutrients and organisms in newly formed sea ice on the Mackenzie shelf: significance of heterotrophic regeneration and exopolymeric substances, nutrients and EPS in newly formed sea ice. Mar Ecol Prog Ser 342:55–67CrossRefGoogle Scholar
  121. Rinta-Kanto JM, Sun S, Sharma S, Kiene RP, Moran MA (2012) Bacterial community transcription patterns during a marine phytoplankton bloom. Environ Microbiol 14:228–239PubMedCrossRefGoogle Scholar
  122. Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1(5):1–30Google Scholar
  123. Roca C, Alves VD, Freitas F, Reis MA (2015) Exopolysaccharides enriched in rare sugars: bacterial sources, production, and applications. Front Microbiol 6:288. doi: 10.3389/fmicb.2015.00288 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Rochera C, Fernández-Valiente E, Van de Vijver B, Rico E, Toro M, Vincent WF, Quesada A, Camacho A (2013) Community structure and photosynthetic activity of benthic biofilms from a waterfall in the maritime Antarctica. Polar Biol 36:1709–1722CrossRefGoogle Scholar
  125. Rue EL, Bruland KW (1995) Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar Chem 50:117–138CrossRefGoogle Scholar
  126. Santchi PH, Banois E, Wilkinson KJ, Zhang J, Buffle J (1998) Fibrillar polysaccharides in marine macromolecular organic matter as imaged by atomic force microscopy and transmission electron microscopy. Limnol Oceanogr 43:896–908CrossRefGoogle Scholar
  127. Schlekat CE, Decho AW, Chandler GT (1998) Sorption of cadmium to bacterial extracellular polymeric sediment coatings under estuarine conditions. Environ Toxicol Chem 17:1867–1874CrossRefGoogle Scholar
  128. Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C (2005) Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res 53(1):43–66CrossRefGoogle Scholar
  129. Selbmann L, Onofri S, Fenice M, Federici F, Petruccioli M (2002) Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res Microbiol 153:585–592PubMedCrossRefGoogle Scholar
  130. Shirkey B, Kovarcik DP, Wright DJ, Wilmoth G, Prickett TF, Helm RF, Gregory EM, Potts M (2000) Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (Cyanobacteria) after years of desiccation. J Bacteriol 182:189–197PubMedPubMedCentralCrossRefGoogle Scholar
  131. Song W, Zhao C, Zhang D, Mu S, Pan X (2016) Different resistance to UV-B radiation of extracellular polymeric substances of two cyanobacteria from contrasting habitats. Front Microbiol 7:1208PubMedPubMedCentralGoogle Scholar
  132. Sun C, Wang J-W, Fang L, Gao X-D, Tan R-X (2004) Free radical scavenging and antioxidant activities of ePS2, an expolysaccharide produced by a marine filamentous fungus Keissleriella sp. YS4108. Life Sci 75:1063–1073PubMedCrossRefGoogle Scholar
  133. Sun M-L, Zhao F, Shi M, Zhang X-Y, Zhou B-C, Zhang Y-Z, Chen X-L (2015) Characterization and biotechnological potential analysis of a new exopolysaccharide from the Arctic marine bacterium Polaribacter sp. SM1127. Scientific Rep 5:18435CrossRefGoogle Scholar
  134. Sunda W, Kieber DJ, Kiene RP, Huntsman S (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418:317–320PubMedCrossRefGoogle Scholar
  135. Sutherland IW (1972) Bacterial exopolysaccharides. Adv Microb Physiol 8:143–213PubMedCrossRefGoogle Scholar
  136. Sutton RL (1991) Critical cooling rates to avoid ice crystallization in aqueous cryoprotectant solutions containing polymers. Chem Soc Faraday Trans 87:3747–3751CrossRefGoogle Scholar
  137. Takeuchi N, Kohshima S, Seko K (2001) Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arct Antarct Alp Res 33:115–122CrossRefGoogle Scholar
  138. Taton A, Grubisic S, Balthasart P, Hodgson DA, Laybourn-Parry J, Wilmotte A (2006) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57:272–289PubMedCrossRefGoogle Scholar
  139. Techtmann SM, Fitzgerald KS, Stelling SC, Joyner DC, Uttukar SM, Harris AP, Alshibli NK, Brown SD, Hazen TC (2016) Colwellia psychrerythraea strains from distant deep sea basins show adaptation to local conditions. Front Environ Sci 4:33CrossRefGoogle Scholar
  140. Toggweiler JR (1993) Carbon overconsumption. Nature 363:210–211CrossRefGoogle Scholar
  141. Torstensson A, Hedblom M, Mattsdotter Björk M, Chierici M, Wulff A (2015) Long-term acclimation to elevated pCO2 alters carbon metabolism and reduces growth in the Antarctic diatom Nitzschia lecointei. Proc Roy Soc B Biol Sci 282:20151513CrossRefGoogle Scholar
  142. Toseland A, Daines SJ, Clark JR, Kirkham A, Strauss J, Uhlig C, Lenton TM, Valentin K, Pearson GA, Moulton V, Mock T (2013) The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat Clim Change 3:979–984CrossRefGoogle Scholar
  143. Underwood GJ, Fietz S, Papadimitriou S, Thomas DN, Dieckmann GS (2010) Distribution and composition of dissolved extracellular polymeric substances (EPS) in Antarctic sea ice. Mar Ecol Progr Ser 404:1–9CrossRefGoogle Scholar
  144. Underwood GJ, Aslam SN, Michel C, Niemi A, Norman L, Meiners KM, Laybourn-Parry J, Paterson H, Thomas DN (2013) Broad-scale predictability of carbohydrates and exopolymers in Antarctic and Arctic sea ice. Proc Natl Acad Sci U S A 110(39):15734–15739PubMedPubMedCentralCrossRefGoogle Scholar
  145. van der Merwe P, Lannuzel D, Nichols CAM, Meiners K, Heil P, Norman L, Thomas DN, Bowie AR (2009) Biogeochemical observations during the winter–spring transition in East Antarctic sea ice: evidence of iron and exopolysaccharide controls. Mar Chem 115:163–175CrossRefGoogle Scholar
  146. Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J (2012) Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Appl Environ Microbiol 78:549–559PubMedPubMedCentralCrossRefGoogle Scholar
  147. Verdugo P (2012) Marine microgels. Annu Rev Mar Sci 4:375–400CrossRefGoogle Scholar
  148. Verdugo P, Santschi PH (2010) Polymer dynamics of DOC networks and gel formation in seawater. Deep Sea Res II 57(16):1486–1493CrossRefGoogle Scholar
  149. Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U, Santschi PH (2004) The oceanic gel phase: a bridge in the DOM-POM continuum. Mar Chem 92:67–85CrossRefGoogle Scholar
  150. Wang S, Bailey D, Lindsay K, Moore JK, Holland M (2014) Impact of sea ice on the marine iron cycle and phytoplankton productivity. Biogeosciences 11:4713–4731CrossRefGoogle Scholar
  151. Wang J, Hu S, Nie S, Yu Q, Xie M (2016) Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxid Med Cell Longev 2016:5692852PubMedGoogle Scholar
  152. Wells LE, Deming JW (2006a) Modeled and measured dynamics of viruses in Arctic winter sea-ice brines. Environ Microbiol 8(6):1115–1121PubMedCrossRefGoogle Scholar
  153. Wells LE, Deming JW (2006b) Characterization of a cold-active bacteriophage on two psychrophilic marine hosts. Aquat Microb Ecol 45:15–29CrossRefGoogle Scholar
  154. Wingender J, Neu TR, Flemming HC (eds) (2012) Microbial extracellular polymeric substances: characterization, structure and function. Springer Science and Business Media, HeidelbergGoogle Scholar
  155. Yallop ML, Paterson DM, Wellsbury P (2000) Interrelationships between rates of microbial production, exopolymer production, microbial biomass, and sediment stability in biofilms of intertidal sediments. Microb Ecol 39:116–127PubMedCrossRefGoogle Scholar
  156. Yan M-X, Mao W-J, Liu X, Wang S-Y, Xia Z, Cao S-J, Li J, Qin L, Xian H-L (2016) Extracellular polysaccharide with novel structure and antioxidant property produced by the deep-sea fungus Aspergillus versicolor N2bc. Carbohydr Polym 147:272–281PubMedCrossRefGoogle Scholar
  157. Zhou J, Delille B, Eicken H, Vancoppenolle M, Brabant F, Carnat G, Geilfus NX, Papakyriakou T, Heinesch B, Tison JL (2013) Physical and biogeochemical properties in landfast sea ice (Barrow, Alaska): insights on brine and gas dynamics across seasons. J Geophys Res Oceans 118(6):3172–3189CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Oceanography, University of WashingtonSeattleUSA

Personalised recommendations