Cryoprotectants and Ice-Binding Proteins

  • Hidehisa KawaharaEmail author


Some bacteria have developed a variety of strategies to survive and colonize extremely cold environments such as the Antarctic and the Arctic. In these frozen environments, bacteria are exposed to conditions that necessitate the partial removal of water from the intracellular space in order to maintain the structure and function of the cell. To avoid the dehydration condition under frozen environments, bacteria can accumulate small compounds, i.e. glucose, trehalose, etc., for keeping the unfrozen conditions. Also, some bacteria can produce some ice crystal-controlling materials into the intracellular or extracellular space. The ice crystal-controlling materials are ice-nucleating proteins, anti-nucleating materials, and antifreeze proteins. Among these three compounds, ice-nucleating proteins can facilitate the ice-nucleating activity at temperatures more than −3 °C. Also, anti-nucleating materials can inhibit ice-nucleating activity, thereby facilitating the supercooling temperature. Antifreeze proteins can inhibit ice crystal growth by binding with the surface of ice crystal. The production of these materials can diminish the fear of physical action by ice crystals in the intra- or extracellular space. In this chapter, the origin, structure, and functions of the ice crystal-controlling materials are mentioned.



This work was carried out in collaboration with Professor Hitoshi Obata in the Laboratory of Microbial Technology, Department of Biotechnology, Kansai University. I would like to thank Jiro Nishikawa, Department of Applied Biological Science, Science University of Tokyo, for providing me with some microorganisms including bacteria, yeasts, and filamentous fungi from Antarctica. I am also grateful to Drs. BR Glick and M Griffith from the Department of Biology, Waterloo University, for providing me with P. putida GR12-2. Also, I like to thank all graduate and undergraduate students, who were studying the mechanism of cryotolerance in bacteria and ice crystal-controlling proteins from some microorganisms.


  1. Abe K, Watabe S, Emori Y, Watanabe M, Arai S (1989) An ice nucleation active gene of Erwinia ananas. FEBS Lett 258:297–300CrossRefPubMedGoogle Scholar
  2. Anderson JO, Nath J, Harner EJ (1978) Effect of freeze preservation on some pollen enzyme. II. Freezing and freeze-drying stresses. Cryobiology 15:468–477Google Scholar
  3. Arai S, Watanabe M (1985) The protein that prevents the formation of ice nuclei. Kagaku To Seibutsu 23:363–373. (in Japanese)Google Scholar
  4. Barrett J (2001) Thermal hysteresis proteins. Int J Biochem Cell Biol 33:105–117CrossRefPubMedGoogle Scholar
  5. Beall PT (1983) States of water in biological systems. Cryobiology 20:324–334CrossRefPubMedGoogle Scholar
  6. Chattopadhyay MK (2002) The cryoprotective effects of glycine betaine. Trends Microbiol 10:311CrossRefGoogle Scholar
  7. Chattopadhyay MK (2006) Mechanism of bacterial adaptation to low temperature. J Biosci 31:157–165CrossRefPubMedGoogle Scholar
  8. Chilson OP, Costello LA, Kaplan NO (1965) Effects of freezing on enzymes. Fed Proc 24:55–65Google Scholar
  9. Cid FP, Rillng JI, Graether SP, Bravo LA, Mora M, Jorquera MA (2016) Properties and biotechnological applications of ice-binding proteins in bacteria. FEMS Microbiol Lett 363:1–12CrossRefGoogle Scholar
  10. Duman JG, Olsen TM (1993) Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology 30:322–328CrossRefGoogle Scholar
  11. Fall R, Wolber PK (1995) Biochemistry of bacterial ice nuclei. In: Lee RE, Jr Warren GJ, Gusta LV (eds) Biological ice nucleation and its applications. APS Press, St. Paul, MN, pp 63–81Google Scholar
  12. Franks F (1985) Biophysics and biochemistry at low temperatures. Japan UNI Agency, TokyoGoogle Scholar
  13. Fujikawa S (1987) Mechanisms of freezing injury in cellular level. Trans JAR 14:11–25Google Scholar
  14. Fukuoka S, Kamishima H, Tamiya E, Karube I (1992) Spontaneous release of outer membrane vesicles by Erwinia carotovora. Microbios 72:167–173Google Scholar
  15. Gilbert JA, Hill PJ, Dodd CER, Laybourn-Party J (2004) Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology 150:171–180CrossRefPubMedGoogle Scholar
  16. Gilbert JA, Davies PL, Laybourn-Party J (2005) A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiol Lett 245:67–72CrossRefPubMedGoogle Scholar
  17. Govindarajan A, Lindow SE (1988) Phospholipid requirement for expression of ice nuclei in Pseudomonas syringae and in vitro. J Biol Chem 263:9333–9338PubMedGoogle Scholar
  18. Graether SP, Jia Z (2001) Modeling Pseudomonas syringae ice-nucleation protein as a beta-helical protein. Biophys J 80:1169–1173CrossRefPubMedPubMedCentralGoogle Scholar
  19. Green R, Warren G (1985) Physical and functional repetition in a bacterial ice nucleation gene. Nature 317:645–648CrossRefGoogle Scholar
  20. Guriansherman D, Lindow SE (1993) Bacterial ice nucleation: significance and molecular basis. FASEB J 7:1338–1343Google Scholar
  21. Hashim NH, Bharudin I, Nguong DL, Higa S, Bakar FD, Nathan S, Rabu A, Kawahara H, Illias RM, Najimudin N, Mahadi NM, Murad AM (2013) Characterization of Afp1, an antifreeze protein from the psychrophilic yeast Glaciozyma antarctica. Extremophiles 17:63–73CrossRefPubMedGoogle Scholar
  22. Hew CL, Yang DSC (1992) Protein interaction with ice. Eur J Biochem 203:33–42CrossRefPubMedGoogle Scholar
  23. Hirano SS, Nordheim EV, Arny DC, Upper CD (1982) Longnormal distribution of epiphytic bacterial population of leaf surfaces. Appl Environ Microbiol 44:697–700Google Scholar
  24. Honjoh K, Matsumoto H, Shimizu H, Ooyama K, Tanaka K, Oda Y, Takata R, Joh T, Suga K, Miyamoto T, Iio M, Hatano S (2000) Cryoprotective activities of group 3 late embryogenesis abundant proteins from Chlorella vulgaris C-27. Biosci Biotechnol Biochem 64:1656–1663CrossRefPubMedGoogle Scholar
  25. Kajava AV, Lindow SE (1993) A model of the three-dimensional structure of ice nucleation proteins. J Mol Biol 232:709–717CrossRefPubMedGoogle Scholar
  26. Kawahara H, Mano Y, Obata H (1993) Purification and characterization of extracellular ice-nucleating matter from Erwinia uredovora KUIN-3. Biosci Biotechnol Biochem 57:1429–1432CrossRefGoogle Scholar
  27. Kawahara H, Mano Y, Hamada R, Obata H (1994) Role of spermidine in ice-nucleating activity of the EIM from Erwinia uredovora KUIN-3. Biosci Biotechnol Biochem 59:2201–2206CrossRefGoogle Scholar
  28. Kawahara H, Ikugawa H, Obata H (1996a) Isolation and characterization of a marine ice-nucleating bacterium, Pseudomonas sp. KUIN-5, which produces cellulose and secretes it in the culture broth. Biosci Biotechnol Biochem 60:1474–1478CrossRefGoogle Scholar
  29. Kawahara H, Nagae I, Obata H (1996b) Purification and characterization of a new anti-nucleating protein isolated from Acinetobacter calcoaceticus KINI-1. Biocontrol Sci 1:11–17CrossRefGoogle Scholar
  30. Kawahara H, Matsushita M, Yamada K, Obata H (1999) The control of the production and secretion of extracellular ice-nucleating materials of Erwinia uredovora KUIN-3. Biocontrol Sci 4:9–16CrossRefGoogle Scholar
  31. Kawahara H, Masuda K, Obata H (2000a) Identification of a compound in Chamaecyparis taiwanensis inhibiting the ice-nucleating activity of Pseudomonas fluorescens KUIN-1. Biosci Biotechnol Biochem 64:2651–2656CrossRefPubMedGoogle Scholar
  32. Kawahara H, Koda N, Oshio M, Obata H (2000b) A cold acclimation protein with refolding activity on frozen denatured enzymes. Biosci Biotechnol Biochem 64:2668–2674CrossRefPubMedGoogle Scholar
  33. Kawahara H, Li J, Griffith M, Glick BR (2001) Relationship between antifreeze protein and freezing resistance in Pseudomonas putida GR12-2. Curr Microbiol 43:365–370CrossRefPubMedGoogle Scholar
  34. Kawahara H, Nakano Y, Omiya K, Muryoi N, Nishikawa J, Obata H (2004) Production of two types of ice crystal-controlling proteins in Antarctic bacterium. J Biosci Bioeng 98:220–223CrossRefPubMedGoogle Scholar
  35. Kawahara H, Takemura T, Obata H (2005) Ice crystal-controlling protein from Thamnolia vermicularis. Lichenology 4:97–104Google Scholar
  36. Kawahara H, Iwanaka Y, Higa S, Muryoi N, Sato M, Honda M, Omura H, Obata H (2007) A novel, intracellular antifreeze protein in an antarctic bacterium, Flavobacterium xanthum. CryoLett 28:39–49Google Scholar
  37. Kawahara H, Matsuda Y, Sakaguchi T, Arai N, Koide Y (2016) Antifreeze activity of xylomannan from the mycelium and fruit body of Flammulina velutipes. Biocontrol Sci 21:153–159CrossRefPubMedGoogle Scholar
  38. Kim HK (1987) Xanthomonas campestris pv. translucens strains active in ice nucleation. Plant Dis 71:994–997CrossRefGoogle Scholar
  39. Ko R, Smith LT, Smith GM (1994) Glycine betaine confers enhanced osmotolerance and cryotolerance in Listeria monocytogenes. J Bacteriol 176:426–431CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kobashigawa Y, Nishimiya Y, Miura K, Ohgiya S, Miura A, Tsuda S (2005) A part of ice nucleation protein exhibits the ice-binding ability. FEBS Lett 579:1493–1497CrossRefPubMedGoogle Scholar
  41. Koda N, Aoki M, Kawahara H, Obata H (2000) Characterization and properties of intracellular proteins after cold acclimation of ice-nucleating bacterium Pantoea agglomerans (Erwinia herbicola) IFO12686. Cryobiology 41:195–203CrossRefPubMedGoogle Scholar
  42. Koda N, Asaeda T, Yamade K, Kawahara H, Obata H (2001) A novel cryoprotective protein (CRP) with high activity from the ice-nucleating bacterium Pantoea agglomerance IFO12686. Biosci Biotechnol Biochem 65:888–894CrossRefPubMedGoogle Scholar
  43. Koda N, Inada Y, Nakayama S, Kawahara H, Obata H (2002) Response of the ice-nucleating bacterium Pantoea ananas KUIN-3 during cold acclimation. Biosci Biotechnol Biochem 66:866–868CrossRefPubMedGoogle Scholar
  44. Kozloff LM, Turner MA, Arellano F, Lute M (1991) Phosphatidylinositol, a phospholipid of ice-nucleating bacteria. J Bacteriol 173:2053–2060CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lee JK, Park KS, Park S, Park H, Song YH, Kang S-H, Kim HJ (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology 60:222–228CrossRefPubMedGoogle Scholar
  46. Li J, Lee TC (1998) Bacterial extracellular ice nucleator effects on freezing of foods. J Food Sci 63:375–381CrossRefGoogle Scholar
  47. Lin C, Thomasow MF (1992) DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene cor15 and characterization of the COR15. Plant Physiol 99:519–525CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lindow SE (1983) The role of bacterial ice nucleation in frost injury to plants. Annu Rev Phytopathol 21:363–384CrossRefGoogle Scholar
  49. Maki LR, Galyan EL, Chang-Cheng NM, Caldwell DR (1974) Ice nucleation induced by Pseudomonas syringae. Appl Microbiol 28:456–459PubMedPubMedCentralGoogle Scholar
  50. Matsukawa H, Yagi Y, Matsuda H, Kawahara H, Yamamoto I, Matsuoka J, Tanaka N (2000) Ascorbic acid 2-glucoside prevents sinusoidal endothelial cell apoptosis in supercooled preserved grafts in rat liver transplantation. Transplant Proc 32:313–317CrossRefPubMedGoogle Scholar
  51. Mazur P (1970) Cryobiology: the freezing of biological systems. Science 168:939–949CrossRefPubMedGoogle Scholar
  52. Michigami Y, Watabe S, Abe K, Obata H, Arai S (1994) Cloning and sequencing of an ice nucleation active gene of Erwinia uredovora. Biosci Biotechnol Biochem 58:762–764CrossRefPubMedGoogle Scholar
  53. Michigami Y, Abe K, Obata H, Arai S (1995a) Significance of the C-terminal domain of Erwinia uredovora ice nucleation-active protein (Ina U). J Biochem (Tokyo) 118:1279–1284CrossRefGoogle Scholar
  54. Michigami Y, Abe K, Iwabuchi K, Obata H, Arai S (1995b) Formation of ice-nucleation-active vesicle in Erwinia uredovora at low temperature and transport of InaU molecules into shed vesicles. Biosci Biotechnol Biochem 59:1996–1998CrossRefGoogle Scholar
  55. Mills SV (1999) Novel biochemical compounds from Antarctic microorganisms. PhD thesis, Nottingham University, UKGoogle Scholar
  56. Mizuno H (1989) Prediction of the conformation of ice-nucleation protein by conformational energy calculation. Proteins 5:47–65CrossRefPubMedGoogle Scholar
  57. Momma M, Haraguchi K, Saito M, Chikuni K, Harada K (1997) Purification and characterization of the acid soluble 26-kDa polypeptide from soybean seeds. Biosci Biotechnol Biochem 61:1286–1289CrossRefPubMedGoogle Scholar
  58. Morita Y, Nakamori S, Takagi H (2003) L-Proline accumulation and freeze tolerance in Saccharomyces cerevisiae are caused by a mutation in the PRO1 gene encoding gamma-glutamyl kinase. Appl Environ Microbiol 69:212–219CrossRefPubMedPubMedCentralGoogle Scholar
  59. Muryoi N, Sato M, Kaneko S, Kawahara H, Obata H, Yaish MWF, Griffith M, Glick BR (2004) Cloning and expression of afpA, a gene encoding an antifreeze protein from the Arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. J Bacteriol 186:5661–5667CrossRefPubMedPubMedCentralGoogle Scholar
  60. Neven LG, Haskell DW, Hong A, Li Q-B, Guy CL (1993) Characterization of a spinach gene responsive to low temperature and water stress. Plant Mol Biol 21:291–305CrossRefPubMedGoogle Scholar
  61. Obata H, Saeki Y, Tanashita J, Tokuyama T, Hori H, Higashi Y (1987) Identification of an ice-nucleating bacterium KUIN-1 as Pseudomonas fluorescens and its nucleation properties. Agric Biol Chem 51:1761–1766Google Scholar
  62. Obata H, Tanaka T, Kawahara H, Tokuyama T (1993) Properties of cell-free ice nuclei from ice nucleation-active Pseudomonas fluorescens KUIN-1. J Ferment Bioeng 76:19–24CrossRefGoogle Scholar
  63. Obata H, Ishigaki H, Kawahara H, Yamade K (1998) Purification and characterization of a novel cold-regulated protein from an ice-nucleating bacterium, Pseudomonas fluorescens KUIN-1. Biosci Biotechnol Biochem 62:2091–2097CrossRefPubMedGoogle Scholar
  64. Obata H, Muryoi N, Kawahara H, Yamade K, Nishikawa J (1999) Identification of a novel ice-nucleating bacterium of Antarctic origin and its ice nucleation properties. Cryobiology 38:131–139CrossRefPubMedGoogle Scholar
  65. Obata H, Muryoi N, Kawahara H, Nishiyama A (2004) Purification and characterization of uridine phosphorylase from the ice-nucleating bacterium, Pantoea agglomerance NBRC12686. CryoLett 25:195–204Google Scholar
  66. Obata H, Shiga N, Takemura T, Kawahara H, Yamamoto Y (2006) Properties of cell-free ice nuclei from a novel ice nucleation-active Heterodermia obscurata (Nyl.) Trevis. Lichenology 5:37–44Google Scholar
  67. Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6:125–136PubMedGoogle Scholar
  68. Phelps P, Geddings TH, Prochoda M, Fall R (1986) Release of cell-free ice nuclei by Erwinia herbicola. J Bacteriol 167:496–502CrossRefPubMedPubMedCentralGoogle Scholar
  69. Pouleur S, Richard C, Martin JG, Autoun H (1992) Ice nucleation activity in Fusarium acuminatum and Fusarium avenaceum. Appl Environ Microbiol 58:2960–2964PubMedPubMedCentralGoogle Scholar
  70. Regand A, Goff HD (2006) Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. J Dairy Sci 89:49–57CrossRefPubMedGoogle Scholar
  71. Rice CV, Middaugh A, Wickham JR, Friedline A, Rhomas KJ III, Scull E, Johnson K, Zachariah M, Garimella R (2015) Bacterial lipoteichoic acid enhanced cryosurvival. Extremophiles 19:297–305CrossRefPubMedGoogle Scholar
  72. Russell NJ (1997) Psychrophilic bacteria –molecular adaptations of membrane lipids. Comp Biochem Physiol Physiol 118:489–493CrossRefGoogle Scholar
  73. Seguro K, Tamiya T, Tsuchiya T, Matsumoto J (1989) Effect of chemical modifications on freeze denaturation of lactate dehydrogenase. Cryobiology 26:154–161CrossRefPubMedGoogle Scholar
  74. Singh P, Singh SM, Tsuji M, Prasad GS, Hoshino T (2014) Rhodotorula svalbardensis sp. nov., a novel yeast species isolated from cryoconite holes of Ny-Ålesund, Arctic. Cryobiology 68:122–128CrossRefPubMedGoogle Scholar
  75. Smiderle FR, Carbonero ER, Mellinger CG, Sassaki GL, Gorin PA, Iacomini M (2006) Structural characterization of a polysaccharide and a beta-glucan isolated from the edible mushroom Flammulina velutipes. Phytochemistry 67:2189–2196CrossRefPubMedGoogle Scholar
  76. Storey KB (1983) Metabolism and bound water in overwintering insects. Cryobiology 20:365–379CrossRefPubMedGoogle Scholar
  77. Storey KB, Storey JM (1986) Freeze tolerance and intolerance as strategies of winter survival in terrestrially-hibernating amphibians. Comp Biochem Physiol 83:613–617CrossRefGoogle Scholar
  78. Sun X, Griffith M, Pasternak JJ, Glick BR (1995) Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 44:64–73Google Scholar
  79. Tamiya T, Okahashi N, Sakuma R, Aoyama T, Akahane T, Matsumoto J (1985) Freeze denaturation of enzymes and its prevention with additives. Cryobiology 22:446–456CrossRefPubMedGoogle Scholar
  80. Thomashow MF (1990) Molecular genetics of cold acclimation in higher plant. Adv Genet 28:99–131Google Scholar
  81. Tsuda S, Ito A, Matsushima N (1997) A hairpin-loop conformation in tandem repeat sequence of the ice nucleation protein revealed by NMR spectroscopy. FEBS Lett 409:227–231CrossRefPubMedGoogle Scholar
  82. Turner MA, Arellano F, Kozloff LM (1991) Components of ice nucleation structures of bacteria. J Bacteriol 173:6515–6527CrossRefPubMedPubMedCentralGoogle Scholar
  83. Walters KR, Serianni AS, Sformo T, Barnes BM, Duman JG (2009) A nonprotein thermal hysteresis-producing xylomannan antifreeze in the freezetolerant Alaskan beetle Upis ceramboides. Proc Natl Acad Sci 106:20210–20215CrossRefPubMedPubMedCentralGoogle Scholar
  84. Warren G, Corotto L (1989) The consensus sequence of ice nucleation proteins from Erwinia herbicola, Pseudomonas fluorescens, and Pseudomonas syringae. Gene 85:241–244CrossRefGoogle Scholar
  85. Warren G, Wolber P (1991) Molecular aspects of microbial ice nucleation. Mol Microbiol 5:239–243CrossRefPubMedGoogle Scholar
  86. Warren G, Corotto L, Wolber P (1986) Conserved repeats in diverged ice nucleation structural genes from two species of Pseudomonas. Nucleic Acids Res 14:8047–8060CrossRefPubMedPubMedCentralGoogle Scholar
  87. Wharton DA, Barrett J, Goodall G, Marshall CJ, Ramlov H (2005) Ice-active proteins from the Antarctic nematode Panagrolaimus davidi. Cryobiology 51:198–207CrossRefPubMedGoogle Scholar
  88. Wilson SL, Kelley DL, Walker VK (2006) Ice-active characteristics of soil bacteria selected by ice-affinity. Environ Microbiol 8:1816–1824CrossRefPubMedGoogle Scholar
  89. Wowk B, Fahy GM (2002) Inhibition of bacterial ice nucleation by polyglycerol polymers. Cryobiology 44:14–23CrossRefPubMedGoogle Scholar
  90. Xu H, Griffith M, Patten CL, Glick BR (1998) Isolation and characterization of an antifreeze protein with ice nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 44:64–73CrossRefGoogle Scholar
  91. Yamashita Y, Nakamura N, Omita K, Nishikwa J, Kawahara H, Obata H (2002a) Identification of an antifreeze lipoprotein from Moraxella sp. of Antarctic origin. Biosci Biotechnol Biochem 66:239–247CrossRefPubMedGoogle Scholar
  92. Yamashita Y, Kawahara H, Obata H (2002b) Identification of a novel anti-ice-nucleating polysaccharide from Bacillus thuringiensis YY529. Biosci Biotechnol Biochem 66:948–954CrossRefPubMedGoogle Scholar
  93. Zhao J, Orser CS (1990) Conserved repetition in the ice nucleation gene inaX from Xanthomonas campestris pv. translucens. Mol Gen Genet 223:163–166CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Biotechnology, Faculty of EngineeringKansai UniversityOsakaJapan

Personalised recommendations