The Climate of Snow and Ice as Boundary Condition for Microbial Life

  • Michael KuhnEmail author
  • Andrew G. Fountain


The microclimate and structure of snow and ice are a boundary condition as well as a matrix for a large spectrum of microbial life under alpine and polar conditions. Biological activity critically depends on the supply of energy, water and nutrients, with solar radiation as the prime source of energy, varying with latitude and altitude. The energy balance at the snow or ice surface provides the boundary condition for the fluxes of energy and water to the snow and ice, with important latitudinal differences from the temperate to the polar regions. The extreme situations of sunlit rocks surrounded by snow and the environment of Antarctic cryoconite holes, where ice, water, solar radiation and nutrients interact in particular ways, closes this review on ice and its effect on microbial life.



We are grateful to F. Pellet and M. Olefs for their assistance in producing the figures.


  1. Brutsaert W (1982) Evaporation into the atmosphere. Reidel Publishing Company, Dordrecht, 299 ppCrossRefGoogle Scholar
  2. Bagshaw EA, Tranter M, Fountain AG, Welch K, Basagic HJ, Lyons WB (2013) Do cryoconite holes have the potential to be significant sources of C, N, and P to downstream depauperate ecosystems of Taylor Valley, Antarctica? Arct Antarct Alp Res 45:440–454CrossRefGoogle Scholar
  3. Colbeck S, Akitaya E, Armstrong R, Gubler H, Lafeuille J, Lied K, McClung D, Morris E (eds) (1990) The international classification for seasonal snow on the ground. International Commission on Snow and Ice, Springfield, VA, 23 ppGoogle Scholar
  4. Christner BC, Kvitko BH, Reeve JN (2003) Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183PubMedGoogle Scholar
  5. Cuffey K, Paterson WSB (2010) The physics of glaciers, 4th edn. Elsevier, CambridgeGoogle Scholar
  6. Dirmhirn I (1964) Das Strahlungsfeld im Lebensraum. Akademische Verlagsgesellschaft, Frankfurt am Main, 426 ppGoogle Scholar
  7. Fierz C, Armstrong RL, Durand Y, Etchevers P, Greene E, McClung DM, Nishimura K, Satyawali PK, Sokratov SA (2009) The international classification for seasonal snow on the ground. IHP-VII Technical Documents in Hydrology N°83, IACS Contribution N°1, UNESCO-IHP, Paris, 80 ppGoogle Scholar
  8. Fountain AG, Campbell JL, Schuur EAG, Stammerjohn SE, Williams MW, Ducklow HW (2012) The disappearing cryosphere: impacts and ecosystem responses to rapid cryosphere loss. BioScience 62(4):405–415CrossRefGoogle Scholar
  9. Fountain AG, Nylen TH, Tranter M, Bagshaw E (2008) Temporal variations in physical and chemical features of cryoconite holes on Canada Glacier, McMurdo Dry Valleys, Antarctica. J Geophys Res 113:G01S92Google Scholar
  10. Fricker HA, Scambos T, Bindschadler R, Padman L (2007) An active subglacial water system in West Antarctica mapped from space. Science 315:1544–1548CrossRefPubMedGoogle Scholar
  11. Hoare RA, Popplewell KB, House DA, Henderson RA, Prebble WM, Wilson AT (1965) Solar heating of Lake Fryxell, a permanently ice-covered Antarctic lake. J Geophys Res 70:1555–1558CrossRefGoogle Scholar
  12. Hodson A (2006) Biogeochemistry of snowmelt in an Antarctic glacial ecosystem. Water Resour Res 42:W11406CrossRefGoogle Scholar
  13. Hoffman MJ, Fountain AG, Liston GE (2008) Surface energy balance and melt thresholds over 11 years at Taylor Glacier, Antarctica. J Geophys Res 113:F04014CrossRefGoogle Scholar
  14. Jones HG (1999) The ecology of snow-covered systems: a brief overview of nutrient cycling and life in the cold. Hydrol Proc 13:2135–2147CrossRefGoogle Scholar
  15. Jones HG, Pomeroy JW, Walker DA, Hoham RW (eds) (2001) Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge University Press, CambridgeGoogle Scholar
  16. Kuhn M (1987) Micro-meteorological conditions for snowmelt. J Glaciol 33:24–26CrossRefGoogle Scholar
  17. Kuhn M (2001) The nutrient cycle through snow and ice. Aquatic Sci 63:150–167CrossRefGoogle Scholar
  18. Lewis K, Fountain A, Dana G (1998) Surface energy balance and meltwater production for a Dry Valley glacier, Taylor Valley, Antarctica. Annals Glaciol 27:603–609Google Scholar
  19. Linke F, Baur F (1970) Meteorologisches Taschenbuch. Akademische Verlagsgesellschaft Geest & Portig, Leipzig, 712 ppGoogle Scholar
  20. Margesin R, Zacke G, Schinner F (2002) Characterization of heterotrophic microorganisms in alpine glacier cryoconite. Arct Antarct Alp Res 34:88–93CrossRefGoogle Scholar
  21. McKay C, Clow G, Wharton R, Squyres S (1985) Thickness of ice on perennially frozen lakes. Nature 313:561–562CrossRefPubMedGoogle Scholar
  22. Meirold-Mautner I (2004) A physical snow-radiation model: measurements, model development and applications to the ecosystem snow. Doctoral thesis, Institute of Meteorology and Geophysics, University of Innsbruck, Austria, 134 ppGoogle Scholar
  23. Olefs M, Baumgartner DJ, Obleitner F, Bichler C, Foelsche U, Pietsch H, Rieder HE, Weiss PH, Geyer F, Haider T, Schöner W (2016) The Austrian radiation monitoring network ARAD – best practice and added value. Atmos Meas Tech 9:1513–1531CrossRefGoogle Scholar
  24. Orvig S (ed) (1970) Climates of the polar regions, World survey of climatology, vol 14. Elsevier, Amsterdam, 370 ppGoogle Scholar
  25. Pomeroy JW, Jones HG (1996) Wind-blown snow: sublimation, transport and changes to polar snow. In: Wolff E, Bales RC (eds) Chemical exchange between the atmosphere and polar snow. Springer, Berlin, pp 453–489CrossRefGoogle Scholar
  26. Porazinska DL, Fountain AG, Nylen TH, Tranter M (2002) The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley Glaciers, Antarctica. Arct Antarct Alp Res 54:495–505Google Scholar
  27. Price PB (2000) A habitat for psychrophiles in deep, Antarctic ice. Proc Natl Acad Sci (USA) 97:1247–1251CrossRefGoogle Scholar
  28. Psenner R, Wille A, Priscu J, Felip M, Wagenbach D, Sattler B (2003) Extremophiles: ice ecosystems and biodiversity. In: Gerday C (ed) Knowledge for sustainable development. An insight into the Encyclopaedia of Life Support Systems, vol III. UNESCO Publishing – EOlSS Publishers, Oxford, pp 573–598. (updated 2007)Google Scholar
  29. Rudolf B, Rubel F (2005) Global precipitation. In: Hantel M (ed) Observed global climate. Landolt-Börnstein new series geophysics, vol 6. Springer, BerlinGoogle Scholar
  30. Sattler B, Puxbaum H, Psenner R (2001) Bacterial growth in supercooled cloud droplets. Geophys Res Lett 28:239–242CrossRefGoogle Scholar
  31. Siegert M, Ellis-Evans JC, Tranter M, Mayer C, Petit J-R, Salamatin A, Priscu J (2001) Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414:603–609CrossRefPubMedGoogle Scholar
  32. Skidmore ML, Anderson SP, Sharp M, Foght J, Lanoil BD (2005) Comparison of microbial community compositions of two subglacial environments reveals a possible role for microorganisms in chemical weathering processes. Appl Environ Microbiol 71:6986–6997CrossRefPubMedPubMedCentralGoogle Scholar
  33. Steinböck O (1936) Über Kryokonitlöcher und ihre biologische Bedeutung. Z Gletscherkd 24:1–21Google Scholar
  34. Tranter M (2005) Geochemical weathering in glacial and proglacial environments. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 5. Elsevier, London, pp 189–205Google Scholar
  35. Tranter M, Sharp MJ, Lamb H, Brown GH, Hubbard BP, Willis IC (2002) Geochemical weathering at the bed of Haut Glacier d’Arolla, Switzerland: a new model. Hydrol Proc 16:959–993CrossRefGoogle Scholar
  36. Tranter M, Fountain A, Fritsen C, Lyons B, Priscu J, Statham P, Welch K (2004) Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. Hydrol Proc 18:379–387CrossRefGoogle Scholar
  37. Tranter M, Skidmore ML, Wadham JL (2005) Hydrological controls on microbial communities in subglacial environments. Hydrol Proc 19:996–998CrossRefGoogle Scholar
  38. Vincent WF, Gibson JAE, Pienitz R, Villeneuve V (2000) Ice shelf microbial ecosystems in the high Arctic and implications for life on Snowball Earth. Naturwissenschaften 87:137–141CrossRefPubMedGoogle Scholar
  39. Wadham JL, Tranter M, Skidmore ML, Hodson AJ, Priscu J, Lyons WB, Sharp M, Wynn P, Jackson M (2010) Biogeochemical weathering under ice: size matters. Global Biogeochem Cycles 24:GB3025CrossRefGoogle Scholar
  40. Wadham JL, Arndt S, Tulaczyk S, Stibal M, Tranter M, Telling J, Lis JP, Lawson E, Ridgwell A, Dubmick A, Sharp MJ, Anesio AM, Butler CEH (2012) Potential methane reservoirs beneath Antarctica. Nature 488:633–637CrossRefPubMedGoogle Scholar
  41. Wallace JM, Hobbs PV (2006) Atmospheric science, an introductory survey, 2nd edn. Elsevier, Amsterdam, 483 ppGoogle Scholar
  42. Warren SG (1982) Optical properties of snow. Rev Geophys 20:67–89CrossRefGoogle Scholar
  43. Wharton RA, McKay CP, Simmons GM, Parker BC (1985) Cryoconite holes on glaciers. Bioscience 35:499–503CrossRefPubMedGoogle Scholar
  44. Wilson AT, Wellman HW (1962) Lake Vanda: an Antarctic lake: Lake Vanda as a solar energy trap. Nature 196:1171–1173CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Atmospheric and Cryospheric SciencesUniversity of InnsbruckInnsbruckAustria
  2. 2.Department of GeologyPortland State UniversityPortlandUSA

Personalised recommendations