Skip to main content

The Climate of Snow and Ice as Boundary Condition for Microbial Life

  • Chapter
  • First Online:
Psychrophiles: From Biodiversity to Biotechnology
  • 1871 Accesses

Abstract

The microclimate and structure of snow and ice are a boundary condition as well as a matrix for a large spectrum of microbial life under alpine and polar conditions. Biological activity critically depends on the supply of energy, water and nutrients, with solar radiation as the prime source of energy, varying with latitude and altitude. The energy balance at the snow or ice surface provides the boundary condition for the fluxes of energy and water to the snow and ice, with important latitudinal differences from the temperate to the polar regions. The extreme situations of sunlit rocks surrounded by snow and the environment of Antarctic cryoconite holes, where ice, water, solar radiation and nutrients interact in particular ways, closes this review on ice and its effect on microbial life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brutsaert W (1982) Evaporation into the atmosphere. Reidel Publishing Company, Dordrecht, 299 pp

    Book  Google Scholar 

  • Bagshaw EA, Tranter M, Fountain AG, Welch K, Basagic HJ, Lyons WB (2013) Do cryoconite holes have the potential to be significant sources of C, N, and P to downstream depauperate ecosystems of Taylor Valley, Antarctica? Arct Antarct Alp Res 45:440–454

    Article  Google Scholar 

  • Colbeck S, Akitaya E, Armstrong R, Gubler H, Lafeuille J, Lied K, McClung D, Morris E (eds) (1990) The international classification for seasonal snow on the ground. International Commission on Snow and Ice, Springfield, VA, 23 pp

    Google Scholar 

  • Christner BC, Kvitko BH, Reeve JN (2003) Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183

    CAS  PubMed  Google Scholar 

  • Cuffey K, Paterson WSB (2010) The physics of glaciers, 4th edn. Elsevier, Cambridge

    Google Scholar 

  • Dirmhirn I (1964) Das Strahlungsfeld im Lebensraum. Akademische Verlagsgesellschaft, Frankfurt am Main, 426 pp

    Google Scholar 

  • Fierz C, Armstrong RL, Durand Y, Etchevers P, Greene E, McClung DM, Nishimura K, Satyawali PK, Sokratov SA (2009) The international classification for seasonal snow on the ground. IHP-VII Technical Documents in Hydrology N°83, IACS Contribution N°1, UNESCO-IHP, Paris, 80 pp

    Google Scholar 

  • Fountain AG, Campbell JL, Schuur EAG, Stammerjohn SE, Williams MW, Ducklow HW (2012) The disappearing cryosphere: impacts and ecosystem responses to rapid cryosphere loss. BioScience 62(4):405–415

    Article  Google Scholar 

  • Fountain AG, Nylen TH, Tranter M, Bagshaw E (2008) Temporal variations in physical and chemical features of cryoconite holes on Canada Glacier, McMurdo Dry Valleys, Antarctica. J Geophys Res 113:G01S92

    Google Scholar 

  • Fricker HA, Scambos T, Bindschadler R, Padman L (2007) An active subglacial water system in West Antarctica mapped from space. Science 315:1544–1548

    Article  CAS  PubMed  Google Scholar 

  • Hoare RA, Popplewell KB, House DA, Henderson RA, Prebble WM, Wilson AT (1965) Solar heating of Lake Fryxell, a permanently ice-covered Antarctic lake. J Geophys Res 70:1555–1558

    Article  Google Scholar 

  • Hodson A (2006) Biogeochemistry of snowmelt in an Antarctic glacial ecosystem. Water Resour Res 42:W11406

    Article  Google Scholar 

  • Hoffman MJ, Fountain AG, Liston GE (2008) Surface energy balance and melt thresholds over 11 years at Taylor Glacier, Antarctica. J Geophys Res 113:F04014

    Article  Google Scholar 

  • Jones HG (1999) The ecology of snow-covered systems: a brief overview of nutrient cycling and life in the cold. Hydrol Proc 13:2135–2147

    Article  Google Scholar 

  • Jones HG, Pomeroy JW, Walker DA, Hoham RW (eds) (2001) Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Kuhn M (1987) Micro-meteorological conditions for snowmelt. J Glaciol 33:24–26

    Article  Google Scholar 

  • Kuhn M (2001) The nutrient cycle through snow and ice. Aquatic Sci 63:150–167

    Article  CAS  Google Scholar 

  • Lewis K, Fountain A, Dana G (1998) Surface energy balance and meltwater production for a Dry Valley glacier, Taylor Valley, Antarctica. Annals Glaciol 27:603–609

    Google Scholar 

  • Linke F, Baur F (1970) Meteorologisches Taschenbuch. Akademische Verlagsgesellschaft Geest & Portig, Leipzig, 712 pp

    Google Scholar 

  • Margesin R, Zacke G, Schinner F (2002) Characterization of heterotrophic microorganisms in alpine glacier cryoconite. Arct Antarct Alp Res 34:88–93

    Article  Google Scholar 

  • McKay C, Clow G, Wharton R, Squyres S (1985) Thickness of ice on perennially frozen lakes. Nature 313:561–562

    Article  CAS  PubMed  Google Scholar 

  • Meirold-Mautner I (2004) A physical snow-radiation model: measurements, model development and applications to the ecosystem snow. Doctoral thesis, Institute of Meteorology and Geophysics, University of Innsbruck, Austria, 134 pp

    Google Scholar 

  • Olefs M, Baumgartner DJ, Obleitner F, Bichler C, Foelsche U, Pietsch H, Rieder HE, Weiss PH, Geyer F, Haider T, Schöner W (2016) The Austrian radiation monitoring network ARAD – best practice and added value. Atmos Meas Tech 9:1513–1531

    Article  Google Scholar 

  • Orvig S (ed) (1970) Climates of the polar regions, World survey of climatology, vol 14. Elsevier, Amsterdam, 370 pp

    Google Scholar 

  • Pomeroy JW, Jones HG (1996) Wind-blown snow: sublimation, transport and changes to polar snow. In: Wolff E, Bales RC (eds) Chemical exchange between the atmosphere and polar snow. Springer, Berlin, pp 453–489

    Chapter  Google Scholar 

  • Porazinska DL, Fountain AG, Nylen TH, Tranter M (2002) The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley Glaciers, Antarctica. Arct Antarct Alp Res 54:495–505

    Google Scholar 

  • Price PB (2000) A habitat for psychrophiles in deep, Antarctic ice. Proc Natl Acad Sci (USA) 97:1247–1251

    Article  CAS  Google Scholar 

  • Psenner R, Wille A, Priscu J, Felip M, Wagenbach D, Sattler B (2003) Extremophiles: ice ecosystems and biodiversity. In: Gerday C (ed) Knowledge for sustainable development. An insight into the Encyclopaedia of Life Support Systems, vol III. UNESCO Publishing – EOlSS Publishers, Oxford, pp 573–598. (updated 2007)

    Google Scholar 

  • Rudolf B, Rubel F (2005) Global precipitation. In: Hantel M (ed) Observed global climate. Landolt-Börnstein new series geophysics, vol 6. Springer, Berlin

    Google Scholar 

  • Sattler B, Puxbaum H, Psenner R (2001) Bacterial growth in supercooled cloud droplets. Geophys Res Lett 28:239–242

    Article  Google Scholar 

  • Siegert M, Ellis-Evans JC, Tranter M, Mayer C, Petit J-R, Salamatin A, Priscu J (2001) Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414:603–609

    Article  CAS  PubMed  Google Scholar 

  • Skidmore ML, Anderson SP, Sharp M, Foght J, Lanoil BD (2005) Comparison of microbial community compositions of two subglacial environments reveals a possible role for microorganisms in chemical weathering processes. Appl Environ Microbiol 71:6986–6997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinböck O (1936) Ãœber Kryokonitlöcher und ihre biologische Bedeutung. Z Gletscherkd 24:1–21

    Google Scholar 

  • Tranter M (2005) Geochemical weathering in glacial and proglacial environments. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 5. Elsevier, London, pp 189–205

    Google Scholar 

  • Tranter M, Sharp MJ, Lamb H, Brown GH, Hubbard BP, Willis IC (2002) Geochemical weathering at the bed of Haut Glacier d’Arolla, Switzerland: a new model. Hydrol Proc 16:959–993

    Article  Google Scholar 

  • Tranter M, Fountain A, Fritsen C, Lyons B, Priscu J, Statham P, Welch K (2004) Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. Hydrol Proc 18:379–387

    Article  Google Scholar 

  • Tranter M, Skidmore ML, Wadham JL (2005) Hydrological controls on microbial communities in subglacial environments. Hydrol Proc 19:996–998

    Article  Google Scholar 

  • Vincent WF, Gibson JAE, Pienitz R, Villeneuve V (2000) Ice shelf microbial ecosystems in the high Arctic and implications for life on Snowball Earth. Naturwissenschaften 87:137–141

    Article  CAS  PubMed  Google Scholar 

  • Wadham JL, Tranter M, Skidmore ML, Hodson AJ, Priscu J, Lyons WB, Sharp M, Wynn P, Jackson M (2010) Biogeochemical weathering under ice: size matters. Global Biogeochem Cycles 24:GB3025

    Article  Google Scholar 

  • Wadham JL, Arndt S, Tulaczyk S, Stibal M, Tranter M, Telling J, Lis JP, Lawson E, Ridgwell A, Dubmick A, Sharp MJ, Anesio AM, Butler CEH (2012) Potential methane reservoirs beneath Antarctica. Nature 488:633–637

    Article  CAS  PubMed  Google Scholar 

  • Wallace JM, Hobbs PV (2006) Atmospheric science, an introductory survey, 2nd edn. Elsevier, Amsterdam, 483 pp

    Google Scholar 

  • Warren SG (1982) Optical properties of snow. Rev Geophys 20:67–89

    Article  Google Scholar 

  • Wharton RA, McKay CP, Simmons GM, Parker BC (1985) Cryoconite holes on glaciers. Bioscience 35:499–503

    Article  PubMed  Google Scholar 

  • Wilson AT, Wellman HW (1962) Lake Vanda: an Antarctic lake: Lake Vanda as a solar energy trap. Nature 196:1171–1173

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to F. Pellet and M. Olefs for their assistance in producing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kuhn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kuhn, M., Fountain, A.G. (2017). The Climate of Snow and Ice as Boundary Condition for Microbial Life. In: Margesin, R. (eds) Psychrophiles: From Biodiversity to Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-57057-0_1

Download citation

Publish with us

Policies and ethics