Skip to main content

Responsive Photonic Crystals with Tunable Structural Color

  • Chapter
  • First Online:
Polymer-Engineered Nanostructures for Advanced Energy Applications

Part of the book series: Engineering Materials and Processes ((EMP))

  • 2593 Accesses

Abstract

Since colorimetric sensors can respond to environmental stimulus by the color change, they are widely concerned because of their low cost and low power consumed. A new material in colorimetric sensors called photonic crystals (PCs) was fabricated for sensing the external stimulus. PCs are composed of periodic ordered dielectrics nanostructures with photonic band gap. Different from dye, PCs can exhibit vivid structural color, which can be tailored by lattice spacing variation under the external stimulus. The PCs materials have important applications in the fields of display, sensors, anti-counterfeiting, and others. In this chapter, we will discuss strategies and mechanism for the fabrication of responsive PCs. Moreover, PCs materials demonstrate response characteristic under external stimuli, such as mechanical force, temperature, pH, ionic species, solvents, biomolecules, light, electrical or magnetic fields, and others. Challenge and perspective of this emerging area will also be discussed at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitney HM, Kolle M, Andrew P (2009) Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science 323:130–133

    Article  Google Scholar 

  2. Noyes JA, Vukusic P, Hooper IR (2007) Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle. Opt Express 15:4351–4358

    Article  Google Scholar 

  3. Kinoshita S, Yoshioka S, Fujii Y et al (2002) Photophysics of structural color in the morpho butterflies. Forma 17:103–121

    Google Scholar 

  4. Gao XF, Yan X, Yao X et al (2007) The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv Mater 19:2213–2217

    Article  Google Scholar 

  5. Parker AR, McPhedran RC, McKenzie DR et al (2001) Photonic engineering. aphrodite’s iridescence. Nature 409:36–37

    Article  Google Scholar 

  6. Parker AR, Welch VL, Driver D et al (2003) Structural colour: opal analogue discovered in a weevil. Nature 426:786–787

    Article  Google Scholar 

  7. Zhao YJ, Xie ZY, Gu HC et al (2012) Bio-inspired variable structural color materials. Chem Soc Rev 41:3297–3317

    Article  Google Scholar 

  8. John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58:2486–2489

    Article  Google Scholar 

  9. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059–2062

    Article  Google Scholar 

  10. Huang Y, Zhou JM, Su B et al (2012) Colloidal photonic crystals with narrow stopbands assembled from low-adhesive superhydrophobic substrates. J Am Chem Soc 134:17053–17058

    Article  Google Scholar 

  11. Fenzl C, Hirsch T, Wolfbeis OS (2014) Photonic crystals for chemical sensing and biosensing. Angew Chem Int Ed 53:3318–3335

    Article  Google Scholar 

  12. Ge JP, Yin YD (2011) Responsive photonic crystals. Angew Chem In Ed 50:1492–1522

    Article  Google Scholar 

  13. Aguirre CI, Reguera E, Stein A (2010) Tunable colors in opals and inverse opal photonic crystals. Adv Funct Mater 20:2565–2578

    Article  Google Scholar 

  14. Yablonovitch E, Gmitter TJ, Leung KM (1991) Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys Rev Lett 67:2295–2298

    Article  Google Scholar 

  15. Tondiglia VP, Natarajan LV, Sutherland RL et al (2002) Holographic formation of electro-optical polymer–liquid crystal photonic crystals. Adv Mater 14:187–191

    Article  Google Scholar 

  16. Mizeikisa V, Juodkazisa S, Marcinkevi A et al (2001) Tailoring and characterization of photonic crystals. J Photoch Photobio C 2:35–69

    Article  Google Scholar 

  17. Liu Y, Liu S, Zhang XS (2006) Fabrication of three-dimensional photonic crystals with two-beam holographic lithography. Appl Optics 45:480–483

    Article  Google Scholar 

  18. Lehmann V, Föll H (1990) Formation mechanism and properties of electrochemically etched trenches in n-type silicon. J Electrochem Soc 137:653–659

    Article  Google Scholar 

  19. Choi SY, Mamak M, Freymann GV et al (2006) Mesoporous bragg stack color tunable sensors. Nano Lett 6:2456–2461

    Article  Google Scholar 

  20. Lotsch BV, Knobbe CB, Ozin GA (2009) A Step Towards optically encoded silver release in 1D photonic crystals. Small 5:1498–1503

    Article  Google Scholar 

  21. Wang ZY, Zhang JH, Wang ZH et al (2013) Biochemical-to-optical signal transduction by pH sensitive organic–inorganic hybrid Bragg stacks with a full color display. J Mater Chem C 1:977–983

    Article  Google Scholar 

  22. Fan Y, Walish JJ, Tang SC et al (2014) Defects, solvent quality, and photonic response in lamellar block copolymer gels. Macromolecules 47:1130–1136

    Article  Google Scholar 

  23. Lee W, Yoon J, Thomas EL et al (2013) Dynamic changes in structural color of a lamellar block copolymer photonic gel during solvent evaporation. Macromolecules 46:6528–6532

    Article  Google Scholar 

  24. Kang Y, Walish JJ, Gorishnyy T et al (2007) Broad-wavelength-range chemically tunable block-copolymer photonic gels. Nat Mater 6:957–960

    Article  Google Scholar 

  25. Ge JP, Hu YX, Yin YD (2007) Highly tunable superparamagnetic colloidal photonic crystals. Angew Chem Int Ed 46:7428–7431

    Article  Google Scholar 

  26. Lee H, Kim J, Kim H et al (2010) Colour-barcoded magnetic microparticles for multiplexed bioassays. Nat Mater 5:745–749

    Article  Google Scholar 

  27. Zhang JT, Smith N, Asher SA (2012) Two-dimensional photonic crystal surfactant detection. Anal Chem 84:6416–6420

    Article  Google Scholar 

  28. Zhang JT, Wang LL, Chao X et al (2013) Vertical spreading of two-dimensional crystalline colloidal arrays. J Mater Chem C 1:6099–6102

    Article  Google Scholar 

  29. Zhang JT, Wang LL, Luo J et al (2011) 2-D array photonic crystal sensing motif. J Am Chem Soc 133:9152–9155

    Article  Google Scholar 

  30. Asher SA, Peteu SF, Reese CE et al (2002) Polymerized crystalline colloidal array chemical-sensing materials for detection of lead in body fluids. Anal Bioanal Chem 373:632–638

    Article  Google Scholar 

  31. Kanai T, Lee D, Shum HC et al (2010) Fabrication of tunable spherical colloidal crystals immobilized in soft hydrogels. Small 6:807–810

    Article  Google Scholar 

  32. Kamenjicki M, Asher SA (2005) Epoxide functionalized polymerized crystalline colloidal arrays. Sens Actuators, B Chem 106:373–377

    Article  Google Scholar 

  33. Ye BF, Rong F, Gu HC et al (2013) Bioinspired angle-independent photonic crystal colorimetric sensing. Chem Commun 49:5331–5333

    Article  Google Scholar 

  34. Zhao YJ, Zhao XW, Hu J et al (2009) Encoded porous beads for label-free multiplex detection of tumor markers. Adv Mater 21:569–572

    Article  Google Scholar 

  35. Asher SA, Holtz J, Liu L et al (1994) Self-assembly motif for creating submicron periodic materials. Polymerized crystalline colloidal arrays. J Am Chem Soc 116:4997–4998

    Article  Google Scholar 

  36. Arsenault A, Clark TJ, Wang RZ et al (2006) From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nat Mater 5:179–184

    Article  Google Scholar 

  37. Jia XL, Wang JY, Wang K et al (2015) Highly sensitive mechanochromic photonic hydrogels with fast reversibility and mechanical stability. Langmuir 31:8732–8737

    Article  Google Scholar 

  38. Foulger SH, Jiang P, Ying Y et al (2001) Photonic bandgap composites. Adv Mater 13:1898–1901

    Article  Google Scholar 

  39. Fudouzi H, Sawada T (2006) Photonic rubber sheets with tunable color by elastic deformation. Langmuir 22:1365–1368

    Article  Google Scholar 

  40. Yang DP, Ye SY, Ge JP (2014) From metastable colloidal crystalline arrays to fast responsive mechanochromic photonic gels: an organic gel for deformation-based display panels. Adv Funct Mater 24:3197–3205

    Article  Google Scholar 

  41. Wang XQ, Wang CF, Zhou ZF et al (2014) Robust mechanochromic elastic one-dimensional photonic hydrogels for touch sensing and flexible displays. Adv Optical Mater 2:652–662

    Article  Google Scholar 

  42. Yue Y, Kurokawa T, Nonoyama T et al (2014) Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels. Nat Commun 5:4659

    Article  Google Scholar 

  43. Haque MA, Kurokawa T, Kamita G et al (2011) Rapid and reversible tuning of structural color of a hydrogel over the entire visible spectrum by mechanical stimulation. Chem Mater 23:5200–5207

    Article  Google Scholar 

  44. Chan EP, Walish JJ, Thomas EL et al (2011) Block copolymer photonic gel for mechanochromic sensing. Adv Mater 23:4702–4706

    Article  Google Scholar 

  45. Weissman JM, Sunkara HB, Tse AS et al (1996) Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science 274:959–960

    Article  Google Scholar 

  46. Matsubara K, Watanabe M, Takeoka Y (2007) A thermally adjustable multicolor photochromic hydrogel. Angew Chem Int Ed 46:1688–1692

    Article  Google Scholar 

  47. Kumoda M, Watanabe M, Takeoka Y (2006) Preparations and optical properties of ordered arrays of submicron gel particles: interconnected state and trapped state. Langmuir 22:4403–4407

    Article  Google Scholar 

  48. Chiappelli MC, Hayward RC (2012) Photonic multilayer sensors from photo-crosslinkable polymer films. Adv Mater 24:6100–6104

    Article  Google Scholar 

  49. Takeoka Y, Watanabe M (2003) An electro and thermochromic hydrogel as a full-color indicator Langmuir 19:9104–9106

    Google Scholar 

  50. Ma HR, Zhu MX, Luo W et al (2015) Free-standing, flexible thermochromic films based on one-dimensional magnetic photonic crystals. J Mater Chem C 3:2848–2855

    Article  Google Scholar 

  51. Tsuji S, Kawaguchi H (2005) Colored thin films prepared from hydrogel microspheres. Langmuir 21:8439–8442

    Article  Google Scholar 

  52. Zhang YQ, Qiu JH, Hu RR et al (2015) A visual and organic vapor sensitive photonic crystal sensor consisting of polymer-infiltrated SiO2 inverse opal. Phys Chem Chem Phys 17:9651–9658

    Article  Google Scholar 

  53. Takeoka Y, Watanabe M (2003) Controlled multistructural color of a gel membrane. Langmuir 19:9554–9557

    Article  Google Scholar 

  54. Pan Z, Ma JK, Yan J et al (2012) Response of inverse-opal hydrogels to alcohols. J Mater Chem 22:2018–2025

    Article  Google Scholar 

  55. Fudouzi H, Xia YN (2003) Photonic papers and inks: color writing with colorless materials. Adv Mater 15:892–896

    Article  Google Scholar 

  56. Lee K, Asher SA (2000) Photonic crystal chemical sensors: pH and ionic strength. J Am Chem Soc 122:9534–9537

    Article  Google Scholar 

  57. Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–832

    Article  Google Scholar 

  58. Lim HS, Lee J, Walish JJ et al (2012) Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange. ACS Nano 6:8933–8939

    Article  Google Scholar 

  59. Xu XL, Goponenko AV, Asher SA (2008) Polymerized polyhema photonic crystals: pH and ethanol sensor materials. J Am Chem Soc 130:3113–3119

    Article  Google Scholar 

  60. Cui QZ, Wang W, Gu BH et al (2012) A combined physical–chemical polymerization process for fabrication of nanoparticle—hydrogel sensing materials. Macromolecules 45:8382–8386

    Article  Google Scholar 

  61. Zhang ML, Feng J, Zheng ML et al (2014) Inverse opal hydrogel sensor for the detection of pH and mercury ions. RSC Adv 4:20567–20572

    Article  Google Scholar 

  62. Lee YJ, Braun PV (2003) Tunable inverse opal hydrogel pH sensors. Adv Mater 15:563–566

    Article  Google Scholar 

  63. Xue F, Meng ZH, Qi FL et al (2014) Two-dimensional inverse opal hydrogel for pH sensing. Analyst 139:6192–6196

    Article  Google Scholar 

  64. Xia HW, Zhao JP, Meng C et al (2011) Amphoteric polymeric photonic crystal with U-shaped pH response developed by intercalation polymerization. Soft Matter 7:4156–4159

    Article  Google Scholar 

  65. Shin J, Braun PV, Lee W (2010) Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sens Actuators B Chem 150:183–190

    Article  Google Scholar 

  66. Yetisen AK, Butt H, Vasconcellos F et al (2014) Light-directed writing of chemically tunable narrow-band holographic sensors. Adv Optical Mater 2:250–254

    Article  Google Scholar 

  67. Jiang HL, Zhu YH, Chen C et al (2012) Photonic crystal pH and metal cation sensors based on poly(vinyl alcohol) hydrogel. New J Chem 36:1051–1056

    Article  Google Scholar 

  68. Griffete N, Frederich H, Maitre A et al (2011) Photonic crystal pH sensor containing a planar defect for fast and enhanced response. J Mater Chem 21:13052–13055

    Article  Google Scholar 

  69. Li C, Lotsch BV (2012) Stimuli-responsive 2D polyelectrolyte photonic crystals for optically encoded pH sensing. Chem Commun 48:6169–6171

    Article  Google Scholar 

  70. Fenzl C, Wilhelm S, Hirsch T et al (2013) Optical sensing of the ionic strength using photonic crystals in a hydrogel matrix. ACS Appl Mater Interfaces 5:173–178

    Article  Google Scholar 

  71. Arsenault AC, Puzzo DP, Manners I et al (2007) Photonic-crystal full-colour displays. Nat Photonics 1:468–472

    Article  Google Scholar 

  72. Puzzo DP, Arsenault AC, Manners I et al (2009) Electroactive inverse opal: a single material for all colors. Angew Chem Int Ed 48:943–947

    Article  Google Scholar 

  73. Shim TS, Kim SH, Sim JY et al (2010) Dynamic modulation of photonic bandgaps in crystalline colloidal arrays under electric field. Adv Mater 22:4494–4498

    Article  Google Scholar 

  74. Walish JJ, Kang YJ, Mickiewicz RA et al (2009) Bioinspired electrochemically tunable block copolymer full color pixels. Adv Mater 21:3078–3081

    Article  Google Scholar 

  75. Lu YJ, Xia HW, Zhang GZ et al (2009) Electrically tunable block copolymer photonic crystals with a full color display. J Mater Chem 19:5952–5955

    Article  Google Scholar 

  76. Bibette J (1993) Monodisperse ferrofluid emulsions. J Magn Magn Mater 122:37–41

    Article  Google Scholar 

  77. Xu XL, Friedman G, Humfeld KD et al (2001) Superparamagnetic photonic crystals. Adv Mater 13:1681–1684

    Article  Google Scholar 

  78. Kim H, Ge JP, Kim J et al (2009) Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nat Photonics 3:534–540

    Article  Google Scholar 

  79. Hu HB, Chen QW, Tang J et al (2012) Photonic anti-counterfeiting using structural colors derived from magneticresponsive photonic crystals with double photonic bandgap heterostructures. J Mater Chem 22:11048–11053

    Article  Google Scholar 

  80. Ge JP, He L, Goebl J et al (2009) Assembly of magnetically tunable photonic crystals in nonpolar solvents. J Am Chem Soc 131:3484–3486

    Article  Google Scholar 

  81. Ge JP, Hu YX, Zhang TR et al (2008) Self-assembly and field-responsive optical diffractions of superparamagnetic colloids. Langmuir 24:3671–3680

    Article  Google Scholar 

  82. Kim J, Song Y, He L et al (2011) Real-time optofluidic synthesis of magnetochromatic microspheres for reversible structural color patterning. Small 7:1163–1168

    Article  Google Scholar 

  83. Kamenjicki M, Lednev IK, Mikhonin A et al (2003) Photochemically controlled photonic crystals. Adv Funct Mater 13:774–780

    Article  Google Scholar 

  84. Gu ZZ, Hayami S, Meng QB et al (2000) Control of photonic band structure by molecular aggregates. J Am Chem Soc 122:10730–10731

    Article  Google Scholar 

  85. Kamenjicki M, Lednev IK, Asher SA (2004) Photoresponsive azobenzene photonic crystals. J Phys Chem B 108:12637–12639

    Article  Google Scholar 

  86. Gu ZZ, Iyoda T, Fujishima A et al (2001) Photo-reversible regulation of optical stop bands. Adv Mater 13:1295–1298

    Article  Google Scholar 

  87. Holtz JH, Holtz JS, Munro CH et al (1998) Intelligent polymerized crystalline colloidal arrays: novel chemical sensor materials. Anal Chem 70:780–791

    Article  Google Scholar 

  88. Nakayama D, Takeoka Y, Watanabe M et al (2003) Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. Angew Chem Int Ed 42:4197–4200

    Article  Google Scholar 

  89. Zhao YJ, Zhao XW, Tang BC et al (2010) Quantum-dot-tagged bioresponsive hydrogel suspension array for multiplex label-free dna detection. Adv Funct Mater 20:976–982

    Article  Google Scholar 

  90. Zhang JT, Chao X, Liu XY et al (2013) Two-dimensional array Debye ring diffraction protein recognition sensing. Chem Commun 49:6337–6339

    Article  Google Scholar 

  91. Liu M, Yu LP (2013) A novel platform for sensing an amino acid by integrating hydrogel photonic crystals with ternary complexes. Analyst 138:3376–3379

    Article  Google Scholar 

  92. Liu Y, Zhang YJ, Guan Y (2009) New polymerized crystalline colloidal array for glucose sensing. Chem Commun 1:1867–1869

    Article  Google Scholar 

  93. Kabilan S, Blyth J, Lee MC et al (2004) Glucose-sensitive holographic sensors. J Mol Recognit 17:162–166

    Article  Google Scholar 

  94. Hong XD, Peng Y, Bai JL et al (2013) A novel opal closest-packing photonic crystal for naked-eye glucose detection. Small 10:1308–1313

    Article  Google Scholar 

  95. Yang ZK, Shi DJ, Chen MQ et al (2015) Free-standing molecularly imprinted photonic hydrogels based on b-cyclodextrin for the visual detection of L-tryptophan. Anal Methods 7:8352–8359

    Article  Google Scholar 

  96. MacConaghy KI, Chadly DM, Stoykovich MP et al (2015) Label-free detection of missense mutations and methylation differences in the p53 gene using optically diffracting hydrogels. Analyst 140:6354–6362

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support provided by National Natural Science Foundation of China (51525302), and Shenzhen Science and Technology Project (JCYJ20150630155150194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jintao Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jia, X., Tan, H., Zhu, J. (2017). Responsive Photonic Crystals with Tunable Structural Color. In: Lin, Z., Yang, Y., Zhang, A. (eds) Polymer-Engineered Nanostructures for Advanced Energy Applications. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-57003-7_5

Download citation

Publish with us

Policies and ethics