Indoor Localization Based on Passive Electric Field Sensing

  • Biying FuEmail author
  • Florian Kirchbuchner
  • Julian von Wilmsdorff
  • Tobias Grosse-Puppendahl
  • Andreas Braun
  • Arjan Kuijper
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10217)


The ability to perform accurate indoor positioning opens a wide range of opportunities, including smart home applications and location-based services. Smart floors are a well-established technology to enable marker-free indoor localization within an instrumented environment. Typically, they are based on pressure sensors or varieties of capacitive sensing. These systems, however, are often hard to deploy as mechanical or electrical features are required below the surface. They might also have a limited range or not be compatible with different floor materials. In this paper, we present a novel indoor positioning system using an uncommon form of passive electric field sensing, which detects the change in body electric potential during movement. It is easy to install by deploying a grid of passive wires underneath any non-conductive floor surface. The proposed architecture achieves a high position accuracy and an excellent spatial resolution. In our evaluation, we measure a mean positioning error of only 12.7 cm. The proposed system also combines the advantages of very low power consumption, easy installation, easy maintenance, and the preservation of privacy.


Indoor positioning system Indoor localization Electric field sensing Electric potential sensing Body charge distribution 


  1. 1.
    Bahl, P., Padmanabhan, V.N.: Radar: an in-building RF-based user location and tracking system. In: INFOCOM 2000, Proceedings of the Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 775–784. IEEE (2000)Google Scholar
  2. 2.
    Braun, A., Heggen, H., Wichert, R.: CapFloor – a flexible capacitive indoor localization system. In: Chessa, S., Knauth, S. (eds.) EvAAL 2011. CCIS, vol. 309, pp. 26–35. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33533-4_3 CrossRefGoogle Scholar
  3. 3.
    Dockstader, S.L., Tekalp, A.M.: Multiple camera tracking of interacting and occluded human motion. Proc. IEEE 89(10), 1441–1455 (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Elble, R.J., Thomas, S.S., Higgins, C., Colliver, J.: Stride-dependent changes in gait of older people. J. Neurol. 238(1), 1–5 (1991)CrossRefGoogle Scholar
  5. 5.
    Ficker, T.: Electrification of human body by walking. J. Electrostat. 64(1), 10–16 (2006)CrossRefGoogle Scholar
  6. 6.
    Filippoupolitis, A., Oliff, W., Loukas, G.: Occupancy detection for building emergency management using BLE beacons. In: Czachórski, T., Gelenbe, E., Grochla, K., Lent, R. (eds.) ISCIS 2016. CCIS, vol. 659, pp. 233–240. Springer, Cham (2016). doi: 10.1007/978-3-319-47217-1_25 CrossRefGoogle Scholar
  7. 7.
    Grosse-Puppendahl, T., Dellangnol, X., Hatzfeld, C., Fu, B., Kupnik, M., Kuijper, A., Hastall, M., Scott, J., Gruteser, M.: Platypus - indoor localization and identification through sensing electric potential changes in human bodies. In: 14th ACM International Conference on Mobile Systems, Applications and Services (MobiSys). ACM (2016)Google Scholar
  8. 8.
    Harland, C., Clark, T., Prance, R.: Electric potential probes-new directions in the remote sensing of the human body. Meas. Sci. Technol. 13(2), 163 (2001)CrossRefGoogle Scholar
  9. 9.
    Holm, S., Nilsen, C.I.C.: Robust ultrasonic indoor positioning using transmitter arrays. In: 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–5. IEEE (2010)Google Scholar
  10. 10.
    Ibara, K., Kanetsuna, K., Hirakawa, M.: Identifying individuals’ footsteps walking on a floor sensor device. In: Yoshida, T., Kou, G., Skowron, A., Cao, J., Hacid, H., Zhong, N. (eds.) AMT 2013. LNCS, vol. 8210, pp. 56–63. Springer, Cham (2013). doi: 10.1007/978-3-319-02750-0_6 CrossRefGoogle Scholar
  11. 11.
    Kirchbuchner, F., Grosse-Puppendahl, T., Hastall, M.R., Distler, M., Kuijper, A.: Ambient intelligence from senior citizens’ perspectives: understanding privacy concerns, technology acceptance, and expectations. In: Ruyter, B., Kameas, A., Chatzimisios, P., Mavrommati, I. (eds.) AmI 2015. LNCS, vol. 9425, pp. 48–59. Springer, Cham (2015). doi: 10.1007/978-3-319-26005-1_4 CrossRefGoogle Scholar
  12. 12.
    Kruskal, W., Wallis, W.: Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621 (1952)CrossRefzbMATHGoogle Scholar
  13. 13.
    Lee, C., Chang, Y., Park, G., Ryu, J., Jeong, S.G., Park, S., Park, J.W., Lee, H.C., Hong, K.S., Lee, M.H.: Indoor positioning system based on incident angles of infrared emitters. In: 30th Annual Conference of IEEE Industrial Electronics Society, IECON 2004, vol. 3, pp. 2218–2222. IEEE (2004)Google Scholar
  14. 14.
    Li, N., Becerik-Gerber, B.: Performance-based evaluation of rfid-based indoor location sensing solutions for the built environment. Adv. Eng. Inform. 25(3), 535–546 (2011)CrossRefGoogle Scholar
  15. 15.
    Lim, C.H., Wan, Y., Ng, B.P., See, C.M.S.: A real-time indoor WiFi localization system utilizing smart antennas. IEEE Trans. Consum. Electron. 53(2), 618–622 (2007)CrossRefGoogle Scholar
  16. 16.
    Pu, Q., Gupta, S., Gollakota, S., Patel, S.: Whole-home gesture recognition using wireless signals. In: Proceedings of the 19th Annual International Conference on Mobile Computing and Networking, MobiCom 2013, pp. 27–38. ACM, New York (2013)Google Scholar
  17. 17.
    Rubio, J.P.B., Zhou, C., Hernández, F.S.: Vision-based walking parameter estimation for biped locomotion imitation. In: Cabestany, J., Prieto, A., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 677–684. Springer, Heidelberg (2005). doi: 10.1007/11494669_83 CrossRefGoogle Scholar
  18. 18.
    Saad, S.S., Nakad, Z.S.: A standalone RFID indoor positioning system using passive tags. IEEE Trans. Ind. Electron. 58(5), 1961–1970 (2011)CrossRefGoogle Scholar
  19. 19.
    Steinhage, A., Lauterbach, C.: Sensfloor (r): Ein aal sensorsystem für sicherheit, homecare und komfort. Ambient Assisted Living-AAL (2008)Google Scholar
  20. 20.
    Valtonen, M., Maentausta, J., Vanhala, J.: Tiletrack: capacitive human tracking using floor tiles. In: 2009 IEEE International Conference on Pervasive Computing and Communications, pp. 1–10 (2009)Google Scholar
  21. 21.
    Williams, A., Ganesan, D., Hanson, A.: Aging in place: fall detection and localization in a distributed smart camera network. In: Proceedings of the 15th International Conference on Multimedia, pp. 892–901. ACM (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Fraunhofer IGDDarmstadtGermany
  2. 2.Microsoft ResearchCambridgeUK
  3. 3.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations