Skip to main content

Integration of Fuzzy C-Means and Artificial Neural Network for Short-Term Localized Rainfall Forecast in Tropical Climate

  • Conference paper
  • First Online:
Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016 (IntelliSys 2016)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 16))

Included in the following conference series:

  • 2715 Accesses

Abstract

This paper evaluates the performance of a rainfall forecasting model. In this paper Artificial Neural Network (ANN) and Fuzzy C-Means (FCM) clustering algorithm are combined and used to forecast short-term localized rainfall in tropical climate. State forecast (raining or not raining) and value forecast (rain intensity) are tested using a number of trained networks. Different types of ANN structured were trained with a combination of multilayer perceptron with back propagation network. Levenberg-Marquardt, Bayesian Regularization and Scaled Conjugate Gradient training algorithm are used in the network training. Each neurons uses linear, logistic sigmoid and hyperbolic tangent sigmoid as transfer function. Input parameter preliminary analysis, data cleaning and FCM clustering were used to prepare input data for the ANN forecast model. Meteorological data such as atmospheric pressure, temperature, dew point, humidity and wind speed have been used as input parameters. The predicted rainfall forecast for 1 to 6 h ahead are compared and analyzed. 1 h ahead for state and value forecast yield high accuracy. Result shows that, the combined of FCM-ANN forecast model produces better accuracy compared to a basic ANN forecast model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pradhan, B.: Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. J. Spat. Hydrol. 9, 1–18 (2009)

    Google Scholar 

  2. Shahi, A.: An effective fuzzy C-mean and type-2 fuzzy. J. Theor. Appl. Inf. Technol. 5, 556–567 (2009)

    Google Scholar 

  3. Maqsood, I., Khan, M., Abraham, A.: An ensemble of neural networks for weather forecasting. Neural Comput. Appl. 13, 112–122 (2004)

    Article  Google Scholar 

  4. Hu, M.J.C., Root, H.E.: An adaptive data processing system for weather forecasting. J. Appl. Meteorol. 3(5), 513–523 (1964)

    Article  Google Scholar 

  5. Hung, N.Q., Babel, M.S., Weesakul, S., Tripathi, N.K.: An artificial neural network model for rainfall forecasting in Bangkok, Thailand. Hydrol. Earth Syst. Sci. 13(8), 1413–1425 (2008)

    Article  Google Scholar 

  6. Klent Gomez Abistado, C.N.A., Maravillas, E.A.: Weather forecasting using artificial neural network and bayesian network. J. Adv. Computat. Intell. Intell. Inf. 18(5), 812–817 (2014)

    Article  Google Scholar 

  7. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bezdek, J.C.: FCM: the fuzzy C-means clustering algorithm. Comput. Geosci. 10(2), 191–203 (1984)

    Article  Google Scholar 

  9. Lu, Y., Ma, T., Yin, C., Xie, X., Tian, W., Zhong, S.: Implementation of the fuzzy C-means clustering algorithm in meteorological data. Int. J. Database Theory Appl. 6(6), 1–18 (2013)

    Article  Google Scholar 

  10. Vega-corona, A.: ANN and Fuzzy c-means applied to environmental pollution prediction, pp. 1–6 (2012)

    Google Scholar 

  11. Howard Demuth, M.B., Hagan, M.: Neural network toolbox user’s guide (2012)

    Google Scholar 

  12. Neural Networks Training Based on Differential Evolution Algorithm Compared with Other Architectures for Weather Forecasting34. J. Comput. Sci. Netw. Secur. 9(3), 92–99 (2009)

    Google Scholar 

  13. Cheng, B., Titterington, D.M.: Neural Networks: A Review from a Statistical Perspective. Stat. Sci. 9(1), 2–30 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goss, D.F.E.: Forecasting with neural networks: an application using bankruptcy data. Inf. Manage. 24(3), 159–167 (1993)

    Article  Google Scholar 

  15. Abraham, A., Philip, N.S., Joseph, K.B.: Will we have a wet summer ? In: Soft Computing Models for Long-term Rainfall Forecasting (1992)

    Google Scholar 

  16. Charalambous, C.: Conjugate gradient algorithm for efficient training of artificial neural networks. IEE Proc. G Circuits, Devices Syst. 139(3), 301 (1992)

    Article  Google Scholar 

  17. Foresee, F.D., Hagan, M.T.: Gauss-Newton approximation to Bayesian learning. In: Proceedings of International Conference on Neural Networks (ICNN 1997) (1997)

    Google Scholar 

  18. Pellakuri, V., Rajeswara Rao, D., Lakshmi Prasanna, P., Santhi, M.V.B.T.: A conceptual framework for approaching predictive modeling using multivariate regression analysis vs artificial neural network. J. Theor. Appl. Inf. Technol. 77(2), 287–290 (2015)

    Google Scholar 

  19. Moré, J.J.: The Levenberg-Marquardt algorithm: implementation and theory. In: Lecture Notes in Mathematics, pp. 105–116. Springer, Berlin (1978)

    Google Scholar 

  20. MacKay, D.J.C.: A practical bayesian framework for back propagation networks. Neural Comput. 4(3), 448–472 (1992)

    Article  Google Scholar 

  21. MacKay, D.J.C.: Bayesian interpolation. Neural Comput. 4(3), 415–447 (1992)

    Article  MATH  Google Scholar 

  22. Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain. Science 49(CS-94–125), 64 (1994)

    Google Scholar 

  23. Møller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 6(4), 525–533 (1993)

    Article  Google Scholar 

  24. Hauke, J., Kossowski, T.: Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Quaestiones Geographicae 30(2), 87–93 (2011)

    Article  Google Scholar 

  25. Yuan, H.L., Gao, X.G., Mullen, S.L., Sorooshian, S., Du, J., Juang, H.M.H.: Calibration of probabilistic quantitative precipitation forecasts with an artificial neural network. Weather Forecast. 22(6), 1287–1303 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Zuraidin Mohd-Safar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Mohd-Safar, N.Z., Ndzi, D., Sanders, D., Noor, H.M., Kamarudin, L.M. (2018). Integration of Fuzzy C-Means and Artificial Neural Network for Short-Term Localized Rainfall Forecast in Tropical Climate. In: Bi, Y., Kapoor, S., Bhatia, R. (eds) Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016. IntelliSys 2016. Lecture Notes in Networks and Systems, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-56991-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56991-8_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56990-1

  • Online ISBN: 978-3-319-56991-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics