Skip to main content

Ever-Expanding Application Potentials for Iron-Based Nanomaterials: Catalyses and Biomedicine

  • Chapter
  • First Online:
Book cover Commercialization of Nanotechnologies–A Case Study Approach

Abstract

Iron oxide nanoparticles are iron-based nanomaterials that are, to date, successfully used in various areas of industry and everyday life. The sustainability of iron is a factor which leads to wide variety of research of the iron oxide roles in industrial catalysis and biomedicine. An industrial catalysis and biomedical applications are here connected, because these two groups of applications demand very similar preparation of materials: shape of the particles and their size, the particular and, as uniform as possible, particle porosity. Further, commonly used synthesis methods are outlined, in order to be able to select the preferred synthesis method according to final desired application of the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aisen P, Listowsky I (1980) Iron transport and storage proteins. Annu Rev Biochem 49(1):357–393

    Article  Google Scholar 

  • Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7(1):144

    Article  Google Scholar 

  • Aldridge S (1996) The thread of life: the story of genes and genetic engineering. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22(10):1039–1059

    Google Scholar 

  • Berge ND, Ramsburg CA (2009) Oil-in-water emulsions for encapsulated delivery of reactive iron particles. Environ Sci Technol 43(13):5060–5066

    Article  Google Scholar 

  • Bernhoft RA (2013) Cadmium toxicity and treatment. Sci World J. doi:10.1155/2013/394652

    Google Scholar 

  • Comba S, Sethi R (2009) Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Res 43(15):3717–3726

    Article  Google Scholar 

  • Comba S, Di Molfetta A, Sethi R (2011) A comparison between field applications of nano-, micro-, and millimetric zero-valent iron for the remediation of contaminated aquifers. Water Air Soil Pollut 215(1–4):595–607

    Article  Google Scholar 

  • Dutz S, Hergt R (2014) Magnetic particle hyperthermia—a promising tumour therapy? Nanotechnology 25(45):452001

    Article  Google Scholar 

  • Ebin B, Gürmen S (2011) Aerosol synthesis of nano-crystalline iron particles from iron (II) chloride solution. Metall 65(4):151–154

    Google Scholar 

  • Emsley J (2011) Nature’s building blocks: an AZ guide to the elements. Oxford University Press, Oxford

    Google Scholar 

  • Gotovac Atlagić S, Malina J, Mionić Ebersold M (2014) From mud to bud-recovering Bosnian forgotten iron. In: Proceedings from the 8th European waste water management conference and exhibition, Aqua Enviro, Manchester, 7–8 Oct 2014

    Google Scholar 

  • Greener M (2013) Coping with liver disease. Sheldon Press, London

    Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  Google Scholar 

  • Gurmen S, Guven A, Ebin B et al (2009) Synthesis of nano-crystalline spherical cobalt–iron (Co–Fe) alloy particles by ultrasonic spray pyrolysis and hydrogen reduction. J Alloy Compd 481:600–604

    Article  Google Scholar 

  • Hausinger RP (2013) Biochemistry of nickel. Springer Science & Business Media, New York

    Google Scholar 

  • He F, Zhao DY (2005) Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39:3314–3320

    Article  Google Scholar 

  • He F, Zhao DY (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41:6216–6221

    Article  Google Scholar 

  • Hilger I (2013) In vivo applications of magnetic nanoparticle hypertermia. Int J Hyperthermia 29(8):828–834

    Article  Google Scholar 

  • Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501

    Article  MathSciNet  Google Scholar 

  • Hydro-Engineering Institute Sarajevo (2014) The project for master plan for remediation of hotspots in Bosnia and Herzegovina. Project report, JICA Sarajevo

    Google Scholar 

  • Hydutsky BW, Mack EJ, Beckerman BB et al (2007) Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures. Environ Sci Technol 41:6418–6424

    Article  Google Scholar 

  • Kanel SR, Goswami RR, Clement TP et al (2008) Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environ Sci Technol 42(3):896–900

    Article  Google Scholar 

  • Kim HJ, Phenrat T, Tilton RD et al (2009) Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environ Sci Technol 43:3824–3830

    Article  Google Scholar 

  • Laurent S, Boutry S, Mahieu I et al (2009) Iron oxide based MR contrast agents: from chemistry to cell labeling. Curr Med Chem 16(35):4712–4727

    Article  Google Scholar 

  • Leigh GJ (2004) The world’s greatest fix: a history of nitrogen and agriculture. Oxford University Press, New York

    Google Scholar 

  • Licht S, Cui B, Wang B et al (2014) Ammonia synthesis. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 345(6197):637–640

    Article  Google Scholar 

  • Lindemann A, Lüdtke-Buzug K, Fräderich BM et al (2014) Biological impact of superparamagnetic iron oxide nanoparticles for magnetic particle imaging of head and neck cancer cells. Int J Nanomed 29(9):5025–5040

    Article  Google Scholar 

  • Materia ME, Guardia P, Sathya A et al (2015) Mesoscale assemblies of iron oxide nanocubes as heat mediators and image contrast agents. Langmuir 31(2):808–816

    Article  Google Scholar 

  • Matos RC, Bessa M, Oliveira H et al (2013) Mechanisms of kidney toxicity for chromium- and arsenic-based preservatives: potential involvement of a pro-oxidative pathway. Environ Toxicol Pharmacol 36(3):929–936

    Article  Google Scholar 

  • Midander K, Cronholm P, Karlsson HL et al (2009) Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper (II) oxide particles: a cross-disciplinary study. Small 5(3):389–399

    Article  Google Scholar 

  • Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133–2148

    Article  Google Scholar 

  • Neumaier CE, Baio G, Ferrini S et al (2008) MR and iron magnetic nanoparticles. Imaging opportunities in preclinical and translational research. Tumori 94(2):226–233

    Google Scholar 

  • Niemantsverdriet JW, Van der Kraan AM, Van Dijk WL et al (1980) Behavior of metallic iron catalysts during Fischer-Tropsch synthesis studied with Moessbauer spectroscopy, X-ray diffraction, carbon content determination, and reaction kinetic measurements. J Phys Chem 84(25):3363–3370

    Article  Google Scholar 

  • Okoli C, Boutonnet M, Mariey L et al (2011) Application of magnetic iron oxide nanoparticles prepared from microemulsions for protein purification. J Chem Technol Biotechnol 86:1386–1393

    Article  Google Scholar 

  • Ozaki M, Kratohvil S, Matijević E (1984) Formation of monodispersed spindle-type hematite particles. J Colloid Interface Sci 102(1):146–151

    Article  Google Scholar 

  • Pascal C, Pascal JL, Favier F et al (1999) Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size. Morphology, microstructure, and magnetic behavior. Chem Mater 11(1):141–147

    Article  Google Scholar 

  • Plietker B (ed) (2011) Iron catalysis: fundamentals and applications, vol 33. Springer Science & Business Media, Stuttgart

    Google Scholar 

  • Pour AN, Housaindokht MR, Tayyari SF et al (2010) Fischer-Tropsch synthesis by nano-structured iron catalyst. J Nat Gas Chem 19(3):284–292

    Article  Google Scholar 

  • Sadri F, Ramazani A, Massoudi A et al (2014) Green oxidation of alcohols by using hydrogen peroxide in water in the presence of magnetic Fe3O4 nanoparticles as recoverable catalyst. Green Chem Lett Rev 7(3):257–264

    Article  Google Scholar 

  • Saleh N, Kim HJ, Phenrat T et al (2008) Ionic strength and composition affect the mobility of surface-modified FeO nanoparticles in water-saturated sand columns. Environ Sci Technol 42:3349–3355

    Article  Google Scholar 

  • Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7(4–5):331–342

    Google Scholar 

  • Schrick B, Hydutsky BW, Blough JL et al (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16(11):2187–2193

    Article  Google Scholar 

  • Schwertmann U, Cornell RM (2008) Iron oxides in the laboratory: preparation and characterization. Wiley, Weinheim

    Google Scholar 

  • Smirnov P (2009) Cellular magnetic resonance imaging using superparamagnetic anionic iron oxide nanoparticles: applications to in vivo trafficking of lymphocytes and cell-based anticancer therapy. Methods Mol Biol 512:333–353

    Article  Google Scholar 

  • Smith T (2012) Coping with anaemia. SPCK. Sheldon Press, London

    Google Scholar 

  • Stević D, Kaneko K, Hattori Y et al. (2014) Precipitation of the highly crystalline iron nanoparticles from the iron mine waste water. In: Proceedings from the international student conference of environmental protection and related sciences applicable environmental protection, University of Novi Sad, Novi Sad, 14–16 Nov 2014

    Google Scholar 

  • Sun YP, Li XQ, Zhang WX et al (2007) A method for the preparation of stable dispersion of zerovalent iron nanoparticles. Colloids Surf A 308:60–66

    Article  Google Scholar 

  • Thapa D, Palkar VR, Kurup MB et al (2004) Properties of magnetite nanoparticles synthesized through a novel chemical route. Mater Lett 58(21):2692–2702

    Article  Google Scholar 

  • Tiraferri A, Sethi R (2009) Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. J Nanopart Res 11:635–645

    Article  Google Scholar 

  • Tominaga M, Matsumoto M, Soejima K et al (2006) Size control for two-dimensional iron oxide nanodots derived from biological molecules. J Colloid Interface Sci 299(2):761–765

    Article  Google Scholar 

  • Twigg MV (1989) Catalyst handbook. Wolf, London

    Google Scholar 

  • Van der Laan GP, Beenackers AACM (1999) Kinetics and selectivity of the Fischer-Tropsch synthesis: a literature review. Catalysis Rev 41(3–4):255–318

    Article  Google Scholar 

  • Vecchia ED, Luna M, Sethi R (2009) Transport in porous media of highly concentrated iron micro-and nanoparticles in the presence of xanthan gum. Environ Sci Technol 43(23):8942–8947

    Article  Google Scholar 

  • Williams JP, Southern P, Lissina A et al (2013) Application of magnetic field hyperthermia and superparamagnetic iron oxide nanoparticles to HIV-1-specific T-cell cytotoxicity. Int J Nanomed 8:2543–2554

    Article  Google Scholar 

  • World Health Organization (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva

    Google Scholar 

  • Yang HH, Zhang SQ, Chen XL et al (2004) Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal Chem 76:1316–1321

    Article  Google Scholar 

  • Zhong LS, Hu JS, Liang HP et al (2006) Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv Mater 18(18):2426–2431

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana Gotovac Atlagić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Atlagić, S.G., Pavlić, V. (2018). Ever-Expanding Application Potentials for Iron-Based Nanomaterials: Catalyses and Biomedicine. In: Brabazon, D., et al. Commercialization of Nanotechnologies–A Case Study Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-56979-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56979-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56978-9

  • Online ISBN: 978-3-319-56979-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics