Skip to main content

Resolving Multicopy Duplications de novo Using Polyploid Phasing

Part of the Lecture Notes in Computer Science book series (LNBI,volume 10229)

Abstract

While the rise of single-molecule sequencing systems has enabled an unprecedented rise in the ability to assemble complex regions of the genome, long segmental duplications in the genome still remain a challenging frontier in assembly. Segmental duplications are at the same time both gene rich and prone to large structural rearrangements, making the resolution of their sequences important in medical and evolutionary studies. Duplicated sequences that are collapsed in mammalian de novo assemblies are rarely identical; after a sequence is duplicated, it begins to acquire paralog-specific variants. In this paper, we study the problem of resolving the variations in multicopy, long segmental duplications by developing and utilizing algorithms for polyploid phasing. We develop two algorithms: the first one is targeted at maximizing the likelihood of observing the reads given the underlying haplotypes using discrete matrix completion. The second algorithm is based on correlation clustering and exploits an assumption, which is often satisfied in these duplications, that each paralog has a sizable number of paralog-specific variants. We develop a detailed simulation methodology and demonstrate the superior performance of the proposed algorithms on an array of simulated datasets. We measure the likelihood score as well as reconstruction accuracy, i.e., what fraction of the reads are clustered correctly. In both the performance metrics, we find that our algorithms dominate existing algorithms on more than 93% of the datasets. While the discrete matrix completion performs better on likelihood score, the correlation-clustering algorithm performs better on reconstruction accuracy due to the stronger regularization inherent in the algorithm. We also show that our correlation-clustering algorithm can reconstruct on average 7.0 haplotypes in 10-copy duplication datasets whereas existing algorithms reconstruct less than one copy on average.

M.J. Chaisson and S. Mukherjee—Joint first authorship.

S. Kannan and E.E. Eichler—Joint last authorship.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aguiar, D., Istrail, S.: Haplotype assembly in polyploid genomes and identical by descent shared tracts. Bioinformatics 29(13), i352–i360 (2013)

    Article  Google Scholar 

  2. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. J. ACM (JACM) 55(5), 23 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bansal, V., Bafna, V.: Hapcut: an efficient and accurate algorithm for the haplotype assembly problem. Bioinformatics 24(16), i153–i159 (2008)

    Article  Google Scholar 

  5. Berger, E., Yorukoglu, D., Peng, J., Berger, B.: Haptree: a novel Bayesian framework for single individual polyplotyping using NGS data. PLoS Comput. Biol. 10(3), e1003502 (2014)

    Article  Google Scholar 

  6. Berlin, K., Koren, S., Chin, C.-S., Drake, J.P., Landolin, J.M., Phillippy, A.M.: Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat. Biotechnol. 33(6), 623–630 (2015)

    Article  Google Scholar 

  7. Bonizzoni, P., Dondi, R., Klau, G.W., Pirola, Y., Pisanti, N., Zaccaria, S.: On the minimum error correction problem for haplotype assembly in diploid and polyploid genomes. J. Comput. Biol. 23, 718–736 (2016)

    Article  MathSciNet  Google Scholar 

  8. Cai, C., Sanghavi, S., Vikalo, H.: Structured low-rank matrix factorization for haplotype assembly. J. Sel. Top. Sig. Process. 10(4), 647–657 (2016)

    Article  Google Scholar 

  9. Cai, J.-F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Commun. ACM 55(6), 111–119 (2012)

    Article  MATH  Google Scholar 

  11. Chaisson, M.J.: https://github.com/mchaisso/blasr

  12. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. In: Proceedings of 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 524–533. IEEE (2003)

    Google Scholar 

  13. Chen, Y., Kamath, G., Suh, C., Tse, D.: Community recovery in graphs with locality (2016). arXiv preprint arXiv:1602.03828

  14. Das, S., Vikalo, H.: SDhaP: haplotype assembly for diploids and polyploids via semi-definite programming. BMC Genom. 16(1), 4 (2015)

    Article  Google Scholar 

  15. Demaine, E.D., Immorlica, N.: Correlation clustering with partial information. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) APPROX/RANDOM -2003. LNCS, vol. 2764, pp. 1–13. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45198-3_1

    Google Scholar 

  16. Dempster, A.P.: Laird, N, M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B (Methodol.) 39, 1–38 (1977)

    Google Scholar 

  17. Dennis, M.Y., Nuttle, X., Sudmant, P.H., Antonacci, F., Graves, T.A., Nefedov, M., Rosenfeld, J.A., Sajjadian, S., Malig, M., Kotkiewicz, H., et al.: Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell 149(4), 912–922 (2012)

    Article  Google Scholar 

  18. Eichler, E.E.: Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet. 17(11), 661–669 (2001)

    Article  Google Scholar 

  19. Emanuel, D., Fiat, A.: Correlation clustering – minimizing disagreements on arbitrary weighted graphs. In: Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 208–220. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39658-1_21

    Chapter  Google Scholar 

  20. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  21. Gordon, D., Huddleston, J., Chaisson, M.J.P., Hill, C.M., Kronenberg, Z.N., Munson, K.M., Malig, M., Raja, A., Fiddes, I., Hillier, L.W., et al.: Long-read sequence assembly of the gorilla genome. Science 352(6281), aae0344 (2016)

    Article  Google Scholar 

  22. Jain, P., Netrapalli, P., Sanghavi, S.: Low-rank matrix completion using alternating minimization. In: Proceedings of 45h Annual ACM Symposium on Theory of Computing, STOC 2013, pp. 665–674, ACM, New York (2013)

    Google Scholar 

  23. Jiang, Z., Tang, H., Ventura, M., Cardone, M.F., Marques-Bonet, T., She, X., Pevzner, P.A., Eichler, E.E.: Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution. Nat. Genet. 39(11), 1361–1368 (2007)

    Article  Google Scholar 

  24. Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Phillippy, A.M.: Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. bioRxiv, p. 071282 (2016)

    Google Scholar 

  25. Lancia, G., Bafna, V., Istrail, S., Lippert, R., Schwartz, R.: SNPs problems, complexity, and algorithms. In: Heide, F.M. (ed.) ESA 2001. LNCS, vol. 2161, pp. 182–193. Springer, Heidelberg (2001). doi:10.1007/3-540-44676-1_15

    Chapter  Google Scholar 

  26. Motahari, A., Ramchandran, K., Tse, D., Ma, N.: Optimal DNA shotgun sequencing: noisy reads are as good as noiseless reads (2013). arXiv preprint arXiv:1304.2798

  27. Myers, E.W.: Toward simplifying and accurately formulating fragment assembly. J. Comput. Biol. 2(2), 275–290 (1995)

    Article  MathSciNet  Google Scholar 

  28. Myers, G.: Efficient local alignment discovery amongst noisy long reads. In: Brown, D., Morgenstern, B. (eds.) WABI 2014. LNCS, vol. 8701, pp. 52–67. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44753-6_5

    Google Scholar 

  29. Patterson, M., Marschall, T., Pisanti, N., Iersel, L., Stougie, L., Klau, G.W., Schönhuth, A.: WhatsHap: haplotype assembly for future-generation sequencing reads. In: Sharan, R. (ed.) RECOMB 2014. LNCS, vol. 8394, pp. 237–249. Springer, Cham (2014). doi:10.1007/978-3-319-05269-4_19

    Chapter  Google Scholar 

  30. Pevzner, P.A.: Dna physical mapping and alternating Eulerian cycles in colored graphs. Algorithmica 13(1–2), 77–105 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA fragment assembly. Proc. Nat. Acad. Sci. 98(17), 9748–9753 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Puljiz, Z., Vikalo, H.: Decoding genetic variations: communications-inspired haplotype assembly. IEEE/ACM Trans. Comput. Biol. Bioinform. 13(3), 518–530 (2016)

    Article  Google Scholar 

  33. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schwartz, R., et al.: Theory and algorithms for the haplotype assembly problem. Commun. Inf. Syst. 10(1), 23–38 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Seo, J.-S., Rhie, A., Lee, S., Sohn, M.-H., Kim, C.-U., Hastie, A., Cao, H., Yun, J.-Y., Kim, J., et al.: De novo assembly and phasing of a Korean human genome. Nature 538, 243 (2016)

    Article  Google Scholar 

  36. Si, H., Vikalo, H., Vishwanath, S.: Haplotype assembly: an information theoretic view. In: 2014 IEEE Information Theory Workshop (ITW), pp. 182–186. IEEE (2014)

    Google Scholar 

  37. Stankiewicz, P., Lupski, J.R.: Genome architecture, rearrangements and genomic disorders. Trends Genet. 18(2), 74–82 (2002)

    Article  Google Scholar 

  38. Steinberg, K.M., Graves-Lindsay, T., Schneider, V.A., Chaisson, M.J.P., Tomlinson, C., Huddleston, J.L., Minx, P., Kremitzki, M., Albrecht, D., Magrini, V., et al.: High-quality assembly of an individual of Yoruban descent. bioRxiv, p. 067447 (2016)

    Google Scholar 

  39. Usher, C.L., Handsaker, R.E., Esko, T., Tuke, M.A., Weedon, M.N., Hastie, A.R., Cao, H., Moon, J.E., Kashin, S., Fuchsberger, C., et al.: Structural forms of the human amylase locus and their relationships to SNPs, haplotypes and obesity. Nat. Genet. 47(8), 921–925 (2015)

    Article  Google Scholar 

  40. Welling, M., Kurihara, K.: Bayesian k-means as a maximization-expectation algorithm (2007)

    Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by U.S. National Institutes of Health (NIH) grants 5R01HG002385-15 (E.E.E. and M.J.C.) and 5R01HG008164-02 (S.K. and S.M.). E.E.E. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan E. Eichler .

Editor information

Editors and Affiliations

A Appendix

A Appendix

After each gradient step, the resultant matrix is projected onto the box. The updates for A and B are as follows:

$$ \tilde{A}^{(t+1)} \leftarrow A^{(t)} - \alpha _{A} \nabla _{A} f(A) $$

Then \( A_{ij}^{(t+1)} = {\left\{ \begin{array}{ll} 0, &{} \text {if } \tilde{A}^{(t+1)}_{ij} < 0 \\ \tilde{A}^{(t+1)}_{ij}, &{} \text {if } 0 \le \tilde{A}^{(t+1)}_{ij} \le 1 \\ 1, &{} \text {if } \tilde{A}^{(t+1)}_{ij} > 1 \end{array}\right. } \)

$$ \tilde{B}^{(t+1)} \leftarrow B^{(t)} - \alpha _{B} \nabla _{A} f(B) $$

Then \( B_{ij}^{(t+1)} = {\left\{ \begin{array}{ll} -1, &{} \text {if } \tilde{B}^{(t+1)}_{ij} < -1 \\ \tilde{B}^{(t+1)}_{ij}, &{} \text {if } -1 \le \tilde{A}^{(t+1)}_{ij} \le 1 \\ 1, &{} \text {if } \tilde{A}^{(t+1)}_{ij} > 1 \end{array}\right. } \)

where \(f(\cdot )\) is the objective function. The projected gradient descent allows us to incorporate additional constraints on the problem as well. If we further enforce that the sum of each row of A equals 1, then we would have the projection as \(A_{ij}^{(t+1)} = \max \lbrace 0, \tilde{A}_{ij}^{(t+1)} - \nu _i \rbrace \) where \(\nu _i\) can be computed for each row i using the equality

$$ \sum _{j=1}^S \max \lbrace 0, \tilde{A}_{ij}^{(t+1)} - \nu _i \rbrace =1 $$

We allow a maximum of 50 iteration steps for minimizing each of A and B, and 100 iteration steps for alternating minimization. We exit the iterations if the change in norm is insignificant (\(1e-02\)) or if the objective value change is below a tolerance (\(1e-04\)). The learning rate values have to be computed in order to ensure that gradient steps do not diverge. Our choices of learning rates have been

$$ \alpha _A = C \frac{\Vert \nabla f(A^{(t)})\Vert _F^2}{\Vert \mathcal {P}_\varOmega (\nabla f (A^{(t)}) \cdot B^{(t)}) \Vert _F^2} $$

and

$$ \alpha _B = C \frac{\Vert \nabla f(B^{(t)})\Vert _F^2}{\Vert \mathcal {P}_\varOmega ( A^{(t)} \cdot \nabla f (B^{(t)}) ) \Vert _F^2} $$

where \(C \in (0,1)\).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chaisson, M.J., Mukherjee, S., Kannan, S., Eichler, E.E. (2017). Resolving Multicopy Duplications de novo Using Polyploid Phasing. In: Sahinalp, S. (eds) Research in Computational Molecular Biology. RECOMB 2017. Lecture Notes in Computer Science(), vol 10229. Springer, Cham. https://doi.org/10.1007/978-3-319-56970-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56970-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56969-7

  • Online ISBN: 978-3-319-56970-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics