Skip to main content

Economic Models of Choice

  • Chapter
  • First Online:
Handbook of Marketing Decision Models

Abstract

This chapter provides an introduction to choice models based on the principle of direct utility maximization. Models of direct utility are characterized by specifications of the utility function and accompanying budget constraint that allows separation of what is gained (i.e., utility) from that which is given up in an exchange. Direct utility maximization rationalizes observed choice as arising from goal-oriented consumers who are resource constrained. Marketing data overwhelmingly reflects goal-oriented behavior on the part of consumers in the high rate of zero’s present in disaggregate data, indicating that most people choose to not purchase most products that are available. By developing alternative models of direct utility maximization, we hope to spur additional research on utility formation and a more in-depth understanding of optimal firm reaction to the demands and constraints of consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allenby, Greg M. 1989. A unified approach to identifying, estimating and testing demand structures with aggregate scanner data. Marketing Science 8 (3): 265–280.

    Article  Google Scholar 

  • Allenby, Greg M., Jeff Brazell, John R. Howell, and Peter E. Rossi. 2014a. Valuation of patented product features. Journal of Law and Economics 57 (3): 629–663.

    Article  Google Scholar 

  • Allenby, Greg M., Jeff D. Brazell, John R. Howell, and Peter E. Rossi. 2014b. Economic valuation of product features. Quantitative Marketing and Economics 12 (4): 421–456.

    Article  Google Scholar 

  • Allenby, Greg M., James L. Ginter. 1995. Using extremes to design products and segment markets. Journal of Marketing Research 392–403.

    Google Scholar 

  • Allenby, Greg M., and Peter E. Rossi. 1991. Quality perceptions and asymmetric switching between brands. Marketing science 10 (3): 185–204.

    Article  Google Scholar 

  • Berry, Steven, James Levinsohn, and Ariel Pakes. 1995. Automobile prices in market equilibrium. Econometrica 63 (4): 841–890.

    Article  Google Scholar 

  • Bhat, C.R. 2005. A multiple discrete-continuous extreme value model: Formulation and application to discretionary time-use decisions. Transportation Research 39 (8): 679–707.

    Article  Google Scholar 

  • Bhat, C.R. 2008. The multiple discrete-continuous extreme value (mdcev) model: Role of utility function parameters, identification considerations, and model extensions. Transportation Research 42 (3): 274–303.

    Article  Google Scholar 

  • Chandukala, Sandeep, Jaehwan Kim, Thomas Otter, Peter Rossi, and Greg Allenby. 2007. Choice models in marketing: Economic assumptions, challenges and trends. Foundations and Trends in Marketing 2 (2): 97–184.

    Article  Google Scholar 

  • Chintagunta, Pradeep K. 1993. Investigating purchase incidence, brand choice and purchase quantity decisions of households. Marketing Science 12 (2): 184–208.

    Article  Google Scholar 

  • Christensen, L.R., D.W. Jorgenson, and L.J. Lau. 1975. Transcendental logarithmic utility functions. The American Economic Review 3: 367–383.

    Google Scholar 

  • Dotson, Jeff P., John R. Howell, Jeff D. Brazell, Thomas Otter, Peter J. Lenk, Steven N. MacEachern, and Greg M. Allenby. 2015. A probit model with structured covariance for similarity effects and source of volume calculations. Working paper, Ohio State University.

    Google Scholar 

  • Dubé, Jean-Pierre. 2004. Multiple discreteness and product differentiation: Demand for carbonated soft drinks. Marketing Science 23 (1): 66–81.

    Article  Google Scholar 

  • Edwards, Yancy D., and Greg M. Allenby. 2003. Multivariate analysis of multiple response data. Journal of Marketing Research 40 (3): 321–334.

    Article  Google Scholar 

  • Green, Paul E., and Venkatachary Srinivasan. 1978. Conjoint analysis in consumer research: issues and outlook. Journal of consumer research 103–123.

    Google Scholar 

  • Guadagni, Peter M., and John D.C. Little. 1983. A logit model of brand choice calibrated on scanner data. Marketing science 2 (3): 203–238.

    Article  Google Scholar 

  • Hanemann, W.M. 1984. Discrete/continuous models of consumer demands. Econometrica 52: 541–561.

    Article  Google Scholar 

  • Harlam, Bari A., and Leonard M. Lodish. 1995. Modeling consumers’ choices of multiple items. Journal of Marketing Research 404–418.

    Google Scholar 

  • Hausman, Jerry, Daniel McFadden. 1984. Specification tests for the multinomial logit model. Econometrica: Journal of the Econometric Society 1219–1240.

    Google Scholar 

  • Howard, John A, Jagdish N Sheth. 1969. The theory of buyer behavior, vol. 14. Wiley New York.

    Google Scholar 

  • Howell, John R, Greg M Allenby. 2015. Choice models with fixed costs. Fisher College of Business Working Paper .

    Google Scholar 

  • Howell, John R, Sanghak Lee, and Greg M. Allenby. 2015. Price promotions in choice models. Marketing Science forthcoming.

    Google Scholar 

  • Kim, Dongsoo, Sanghak Lee, Jaehwan Kim, and Greg M. Allenby. 2015a. A direct utility model for economies of scope and access. Working paper, Ohio State University .

    Google Scholar 

  • Kim, Hyowon, Sanghak Lee, Jaehwan Kim, and Greg M. Allenby. 2015b. A direct utility model with discrete and continuous decision variables. Working paper, Ohio State University .

    Google Scholar 

  • Kim, Jaehwan, Greg M. Allenby, and Peter E. Rossi. 2002. Modeling consumer demand for variety. Marketing Science 21 (3): 229–250.

    Article  Google Scholar 

  • Kim, Youngju, Jaehwan Kim, and Greg M. Allenby. 2015c. Conjunctive screening in models of multiple discreteness. working paper, Ohio State Univeristy .

    Google Scholar 

  • Krishnamurthi, Lakshman, and S.P. Raj. 1988. A model of brand choice and purchase quantity price sensitivities. Marketing Science 7 (1): 1–20.

    Article  Google Scholar 

  • Lee, Lung-Fei, and Mark M. Pitt. 1987. Microeconometric models of rationing, imperfect markets, and non-negativity constraints. Journal of Econometrics 36 (1): 89–110.

    Article  Google Scholar 

  • Lee, Sanghak, and Greg M. Allenby. 2014. Modeling indivisible demand. Marketing Science 33 (3): 364–381.

    Article  Google Scholar 

  • Lee, Sanghak, Jaehwan Kim, and Greg M. Allenby. 2013. A direct utility model for asymmetric complements. Marketing Science 32 (3): 454–470.

    Article  Google Scholar 

  • Lenk, Peter J., Wayne S. DeSarbo, Paul E. Green, and Martin R. Young. 1996. Hierarchical bayes conjoint analysis: Recovery of partworth heterogeneity from reduced experimental designs. Marketing Science 15 (2): 173–191.

    Article  Google Scholar 

  • Lin, Chen, Sriram Venkataraman, and Sandy D. Jap. 2013. Media multiplexing behavior: Implications for targeting and media planning. Marketing Science 32 (2): 310–324.

    Article  Google Scholar 

  • Luo, Lan, Brian T. Ratchford, and Botao Yang. 2013. Why we do what we do: A model of activity consumption. Journal of Marketing Research 50 (1): 24–43.

    Article  Google Scholar 

  • Marshall, Pablo, and Eric T. Bradlow. 2002. A unified approach to conjoint analysis models. Journal of the American Statistical Association 97 (459): 674–682.

    Article  Google Scholar 

  • McFadden, Daniel. 1973. Conditional logit analysis of qualitative choice behavior. Frontiers of econometrics. New York: Academic Press.

    Google Scholar 

  • McFadden, Daniel. 1986. The choice theory approach to market research. Marketing Science 5 (4): 275–297.

    Article  Google Scholar 

  • Mehta, N. 2015. A flexible yet globally regular multi-good demand system. Marketing Science forthcoming.

    Google Scholar 

  • Pollak, R.A., and T.J. Wales. 1992. Demand System Specification and Estimation. Oxford, UK.

    Google Scholar 

  • Rossi, P.E., G.M. Allenby, and R. McCulloch. 2005. Bayesian Statistics and Marketing. Wiley.

    Google Scholar 

  • Satomura, Takuya, Jaehwan Kim, and Greg M. Allenby. 2011. Multiple constraint choice models with corner and interior solutions. Marketing Science 30 (3): 481–490.

    Article  Google Scholar 

  • Song, I., and P.K. Chintagunta. 2007. A discrete-continuous model for multicategory purchase behavior of households. J. Marketing Res. 44: 595–612.

    Article  Google Scholar 

  • Sydsæter, Knut, Arne Strøm, Peter Berck, Arne Strøm, and Peter Berck. 2005. Economists’ mathematical manual, vol. 3. Springer.

    Google Scholar 

  • Tanner, Martin A., and Wing Hung Wong. 1987. The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association 82 (398): 528–540.

    Article  Google Scholar 

  • Wales, Terence J., and Alan Donald Woodland. 1983. Estimation of consumer demand systems with binding non-negativity constraints. Journal of Econometrics 21 (3): 263–285.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg M. Allenby .

Editor information

Editors and Affiliations

Appendix

Appendix

Consider the direct utility model:

$$ \max u\left( x \right) =\sum \limits _{k}^{{}}{\frac{{{\psi }_{k}}}{\gamma }}\ln \left( \gamma {{x}_{k}}+1 \right) \text { subject to } p'x \le E $$

where the \(\psi 's\) are assumed to sum to one (i.e., \(\sum \psi _k = 1\)) and \(\gamma > 0\). Solving for the utility maximizing quantities, \(x^*\), by the Lagrangian method will give rise to the following objective function:

$$ L=\sum \limits _{k}^{{}}{\frac{{{\psi }_{k}}}{\gamma }}\ln \left( \gamma {{x}_{k}}+1 \right) -\lambda \left( {p}'x-E \right) $$

The FOC’s for optimal demand (\(x^*\)) are:

$$\begin{aligned} 0=\frac{\partial L}{\partial {{x}_{1}}}=\frac{{{\psi }_{1}}}{\gamma {{x}_{1}}+1}-\lambda {{p}_{1}} \qquad&\Leftrightarrow \qquad {{\psi }_{1}}=\lambda {{p}_{1}}\left( \gamma {{x}_{1}}+1 \right) \\ 0=\frac{\partial L}{\partial {{x}_{2}}}=\frac{{{\psi }_{2}}}{\gamma {{x}_{2}}+1}-\lambda {{p}_{2}} \qquad&\Leftrightarrow \qquad {{\psi }_{2}}=\lambda {{p}_{2}}\left( \gamma {{x}_{2}}+1 \right) \\&\vdots \\ 0=\frac{\partial L}{\partial {{x}_{k}}}=\frac{{{\psi }_{k}}}{\gamma {{x}_{k}}+1}-\lambda {{p}_{k}} \qquad&\Leftrightarrow \qquad {{\psi }_{k}}=\lambda {{p}_{k}}\left( \gamma {{x}_{k}}+1 \right) \end{aligned}$$

Using \(\sum \psi _k = 1\), we solve for \(\lambda \):

$$ 1=\sum \limits _{k=1}^{K}{{{\psi }_{k}}}=\sum \limits _{k=1}^{K}{\lambda {{p}_{k}}\left( \gamma {{x}_{k}}+1 \right) } $$

or

$$ \lambda =\frac{1}{\sum \limits _{k=1}^{K}{{{p}_{k}}\left( \gamma {{x}_{k}}+1 \right) }}=\frac{1}{\gamma E+\sum \limits _{k=1}^{K}{{{p}_{k}}}} $$

Substituting \(\lambda \) back into FOCs yields optimal demand equations:

$$\begin{aligned} x_{k}^{*}&=\frac{1}{\gamma }\left( \frac{{{\psi }_{k}}}{\lambda {{p}_{k}}}-1 \right) \\&=\frac{1}{\gamma }\left( \frac{{{\psi }_{k}}}{{{p}_{k}}}\left( \gamma E+\sum \limits _{k}^{{}}{{{p}_{k}}} \right) -1 \right) \end{aligned}$$

Substituting \(x^*\) into the direct utility function allows us to obtain the expression for indirect utility (V):

$$\begin{aligned} V&\equiv u\left( {{x}^{*}} \right) \\&=\sum \limits _{k}^{{}}{\frac{{{\psi }_{k}}}{\gamma }}\ln \left( \gamma x_{k}^{*}+1 \right) \\&=\sum \limits _{k}^{{}}{\frac{{{\psi }_{k}}}{\gamma }}\ln \left( \gamma \left( \frac{1}{\gamma }\left( \frac{{{\psi }_{k}}}{{{p}_{k}}}\left( \gamma E+\sum \limits _{k}^{{}}{{{p}_{k}}} \right) -1 \right) \right) +1 \right) \\&=\sum \limits _{k}^{{}}{\frac{{{\psi }_{k}}}{\gamma }}\ln \left( \frac{{{\psi }_{k}}}{{{p}_{k}}}\left( \gamma E+\sum \limits _{k}^{{}}{{{p}_{k}}} \right) \right) \\&=\sum \limits _{k}^{{}}{\frac{{{\psi }_{k}}}{\gamma }}\left( \ln {{\psi }_{k}}-\ln {{p}_{k}}+\ln \left( \gamma E+\sum \limits _{k}^{{}}{{{p}_{k}}} \right) \right) \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Allenby, G.M., Kim, J., Rossi, P.E. (2017). Economic Models of Choice. In: Wierenga, B., van der Lans, R. (eds) Handbook of Marketing Decision Models. International Series in Operations Research & Management Science, vol 254. Springer, Cham. https://doi.org/10.1007/978-3-319-56941-3_7

Download citation

Publish with us

Policies and ethics