Advertisement

Code-Based Cryptosystems Using Generalized Concatenated Codes

Conference paper
  • 652 Downloads
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 198)

Abstract

The security of public-key cryptosystems is mostly based on number-theoretic problems like factorization and the discrete logarithm. There exists an algorithm which solves these problems in polynomial time using a quantum computer. Hence, these cryptosystems will be broken as soon as quantum computers emerge. Code-based cryptography is an alternative which resists quantum computers since its security is based on an NP-complete problem, namely decoding of random linear codes. The McEliece cryptosystem is the most prominent scheme to realize code-based cryptography. Many code classes were proposed for the McEliece cryptosystem, but most of them are broken by now. Sendrier suggested to use ordinary concatenated codes, however, he also presented an attack on such codes. This work investigates generalized concatenated codes to be used in the McEliece cryptosystem. We examine the application of Sendrier’s attack on generalized concatenated codes and present alternative methods for both partly finding the code structure and recovering the plaintext from a cryptogram. Further, we discuss modifications of the cryptosystem making it resistant against these attacks.

Keywords

Post-Quantum cryptography Code-based cryptosystems McEliece cryptosystem Generalized concatenated codes 

References

  1. 1.
    Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in \(2^{n/20}\): how 1+ 1= 0 improves information set decoding. In: Advances in Cryptology—EUROCRYPT 2012, pp. 520–536. Springer, Berlin (2012)Google Scholar
  2. 2.
    Berger, T.P., Loidreau, P.: How to mask the structure of codes for a cryptographic use. Des. Codes Cryptogr. 35(1), 63–79 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berlekamp, E.R., McEliece, R.J., Van Tilborg, H.C.A.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bossert, M.: Channel Coding for Telecommunications. Wiley, New York (1999)Google Scholar
  5. 5.
    Blokh, È.L., Zyablov, V.V.: Coding of generalized concatenated codes. Problemy Peredachi Informatsii 10(3), 45–50 (1974)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chizhov, I.V., Borodin, M.A.: The failure of McEliece PKC based on Reed–Muller codes. IACR Cryptol. ePrint Arch. 2013, 287 (2013)Google Scholar
  7. 7.
    Coffey, J.T., Goodman, R.M.: The complexity of information set decoding. IEEE Trans. Inf. Theory 36(5), 1031–1037 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Couvreur, A., Márquez-Corbella, I., Pellikaan, R.: A polynomial time attack against algebraic geometry code based public key cryptosystems (2014). arXiv:1401.6025
  9. 9.
    Chabanne, H., Sendrier, N.: On the concatenated structures of a [49, 18, 12] binary abelian code. Discret. Math. 112(1), 245–248 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)Google Scholar
  12. 12.
    Forney, D.G.: Concatenated codes. vol. 11 MIT press, Cambridge (1966)Google Scholar
  13. 13.
    Heyse, S.: Post quantum cryptography: implementing alternative public key schemes on embedded devices. PhD thesis, dissertation for the degree of doktor-ingenieur: 10.2013/Stefan Heyse.–Bochum, 2013.–235 p.–Bibliogr (2013)Google Scholar
  14. 14.
    Janwa, H., Moreno, O.: McEliece public key cryptosystems using algebraic-geometric codes. Des. Codes Cryptogr. 8(3), 293–307 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Justesen, J.: Class of constructive asymptotically good algebraic codes. IEEE Trans. Inf. Theory 18(5), 652–656 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key cryptosystem. Workshop on the Theory and Application of Cryptographic Techniques. Springer, Berlin, Heidelberg. (1988)Google Scholar
  17. 17.
    Li, Y.X., Deng, R.H., Wang, X.M.: On the equivalence of McEliece’s and Niederreiter’s public-key cryptosystems. IEEE Trans. Inf. Theory 40(1), 271–273 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lidl, R., Niederreiter, H.: Finite Fields, vol. 20. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  19. 19.
    McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN Prog. Rep. 42(44), 114–116 (1978)Google Scholar
  20. 20.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. Elsevier, Amsterdam (1977)zbMATHGoogle Scholar
  21. 21.
    Minder, L., Shokrollahi, A.: Cryptanalysis of the Sidelnikov cryptosystem. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 347–360. Springer, Berlin (2007)Google Scholar
  22. 22.
    Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl. Control Inf. Theory (Problemy Upravleniya I Teorii Informatsii) 15(2), 159–166 (1986)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Peters, C.: Information-set decoding for linear codes over \(\mathbf{F}_q\). In: Post-Quantum Cryptography, pp. 81–94. Springer, Berlin (2010)Google Scholar
  24. 24.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sendrier, N.: On the structure of randomly permuted concatenated code. [Research Report] RR-2460, INRIA (1995).  <inria-00074216>Google Scholar
  26. 26.
    Sendrier, N.: On the concatenated structure of a linear code. Appl. Algebra Eng. Commun. Comput. 9(3), 221–242 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Shor, P.W.: Algorithms for quantum computation: discrete Logarithms and factoring. In: 1994 Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE (1994)Google Scholar
  28. 28.
    Sidelnikov, V.M.: Public-key cryptosystem based on binary Reed–Muller codes. Discret. Math. Appl. 4(3), 191–207 (1994)CrossRefzbMATHGoogle Scholar
  29. 29.
    Sidelnikov, V.M., Shestakov, S.O.: On the insecurity of cryptosystems based on generalized Reed–Solomon codes. Discret. Math. Appl. 2(4), 439–444 (1992)CrossRefGoogle Scholar
  30. 30.
    Wardlaw, W.P.: Matrix representation of finite fields. Math. Mag. 67, 289–293 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Wieschebrink, C.: Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes. In: International Workshop on Post-Quantum Cryptography, pp. 61–72. Springer, Berlin (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Communications EngineeringUlm UniversityUlmGermany

Personalised recommendations