Skip to main content

A Fast Schur–Euclid-Type Algorithm for Quasiseparable Polynomials

  • Conference paper
  • First Online:
  • 842 Accesses

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 198))

Abstract

In this paper, a fast \(\mathscr {O}(n^2)\) algorithm is presented for computing recursive triangular factorization of a Bezoutian matrix associated with quasiseparable polynomials via a displacement equation. The new algorithm applies to a fairly general class of quasiseparable polynomials that includes real orthogonal, Szegö polynomials, and several other important classes of polynomials, e.g., those defined by banded Hessenberg matrices. While the algorithm can be seen as a Schur-type for the Bezoutian matrix it can also be seen as a Euclid-type for quasiseparable polynomials via factorization of a displacement equation. The process, i.e., fast Euclid-type algorithm for quasiseparable polynomials or Schur-type algorithm for Bezoutian associated with quasiseparable polynomials, is carried out with the help of a displacement equation satisfied by Bezoutian and Confederate matrices leading to \(\mathscr {O}(n^2)\) complexity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allen, B.M., Rosenthal, J.: A matrix Euclidean algorithm induced by state space realization. Linear Algebra Appl. 288, 105–121 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barnett, S.: Greatest common divisor of two polynomials. Linear Algebra Appl. 3(1), 7–9 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnett, S.: A note on the Bezoutian matrix. SIAM J. Appl. Math. 22(1), 84–86 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barnett, S.: A companion matrix analogue for orthogonal polynomials. Linear Algebra Appl. 12(3), 197–202 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beckermann, B., Labahn, G.: When are two numerical polynomials relatively prime? J. Symb. Comput. 26(6), 677–689 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beckermann, B., Labahn, G.: A fast and numerically stable Euclidean-like algorithm for detecting relatively prime numerical polynomials. J. Symb. Comput. 26(6), 691–714 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bella, T., Eidelman, Y., Gohberg, I., Olshevsky V.: Classifications of three-term and two-term recurrence relations via subclasses of quasiseparable matrices. SIAM J. Matrix Anal.

    Google Scholar 

  8. Bella, T., Eidelman, Y., Gohberg, I., Olshevsky, V., Tyrtyshnikov, E.: Fast inversion of polynomial-Vandermonde matrices for polynomial systems related to order one quasiseparable matrices. In: Kaashoek, M.A., Rodman, L., Woerdeman, H.J. (eds.) Advances in Structured Operator Theory and Related Areas, Operator Theory: Advances and Applications, vol. 237, pp. 79–106. Springer, Basel (2013)

    Chapter  Google Scholar 

  9. Bella, T., Olshevsky, V., Zhlobich, P.: Classifications of recurrence relations via subclasses of (H, k)-quasiseparable matrices. In: Van Dooren, P., Bhattacharyya, S.P., Chan, R.H., Olshevsky, V., Routray, A. (eds.) Numerical Linear Algebra in Signals, Systems and Control. Lecture Notes in Electrical Engineering, vol. 80, pp. 23–54. Springer, Netherlands (2011)

    Google Scholar 

  10. Bini, D.A., Boito, P.: Structured matrix-based methods for polynomial \(\epsilon \)-GCD: analysis and comparisons. In: D’Andrea, C., Mourrain, B. (eds.) Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, Waterloo, Canada, July 29–August 01 2007 (ISAAC ’07), pp. 9–16. ACM, New York (2007)

    Google Scholar 

  11. Bini, D.A., Gemignani, L.: Fast parallel computation of the polynomial remainder sequence via Bezout and Hankel matrices. SIAM J. Comput. 24(1), 63–77 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bini, D.A., Gemignani, L.: Bernstein–Bezoutian matrices. Theor. Comput. Sci. 315(2–3), 319–333 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bitmead, R.R., Kung, S.Y., Anderson, B.D., Kailath, T.: Greatest common divisor via generalized Sylvester and Bezout matrices. IEEE Trans. Autom. Control 23(6), 1043–1047 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brown, W.S.: On Euclid’s algorithm and the computation of polynomial greatest common divisors. J. Assoc. Comput. Mach. 18(4), 478–504 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brown, W.S., Traub, J.F.: On Euclid’s algorithm and the theory of subresultants. J. Assoc. Comput. Mach. 18(4), 505–514 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  16. Calvetti, D., Reichel, L.: Fast inversion of vandermondelike matrices involving orthogonal polynomials. BIT Numer. Math. 33(3), 473–484 (1993)

    Article  MATH  Google Scholar 

  17. Delosme, J.M., Morf, M.: Mixed and minimal representations for Toeplitz and related systems, In: Proceedings 14th Asilomar Conference on Circuits, Systems, and Computers, Monterey, California (1980)

    Google Scholar 

  18. Dym, H.: Structured matrices, reproducing kernels and interpolation. In: Olshevsky, V. (ed.) Structured Matrices in Mathematics, Computer Science and Engineering I: Contemporary Mathematics, vol. 280, p. 329. American Mathematical Society, Providence (2001)

    Google Scholar 

  19. Genin, Y.V.: Euclid algorithm, orthogonal polynomials, and generalized Routh–Hurwitz algorithm. Linear Algebra Appl. 246, 131–158 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gohberg, I., Olshevsky, V.: Fast inversion of Chebyshev–Vandermonde matrices. Numer. Math. 67(1), 71–92 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gohberg, T., Kailath, T., Olshevsky, V.: Fast Gaussian elimination with partial pivoting for matrices with displacement structure. Math. Comput. 64(212), 1557–1576 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grenander, U., Szegö, G.: Toeplitz Forms and Applications. University of California Press, Berkeley (1958)

    MATH  Google Scholar 

  23. Heinig, G.: Matrix representations of Bezoutians. Linear Algebra Appl. 223–224, 337–354 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Heinig, G., Olshevsky, V.: The Schur algorithm for matrices with Hessenberg displacement structure. In: Olshevsky, V. (ed.) Structured Matrices in Mathematics, Computer Science, and Engineering II: Contemporary Mathematics, vol. 281, pp. 3–16. American Mathematical Society, Providence (2001)

    Chapter  Google Scholar 

  25. Heinig, G., Rost, K.: Algebraic Methods for Toeplitz-Like Matrices and Operators. Operator Theory: Advances and Applications, vol. 13. Birkhäuser, Basel (1984)

    Book  MATH  Google Scholar 

  26. Heinig, G., Rost, K.: On the inverses of Toeplitz-plus-Hankel matrices. Linear Algebra Appl. 106, 39–52 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Heinig, G., Rost, K.: Matrix representations of Toeplitz-plus-Hankel matrix inverses. Linear Algebra Appl. 113, 65–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Heinig, G., Rost, K.: Split algorithm and ZW-factorization for Toeplitz and Toeplitz-plus-Hankel matrices. In: Proceedings of the Fifteenth International Symposium on Mathematical Theory of Networks and Systems, Notre Dame, August 12–16 (2002)

    Google Scholar 

  29. Heinig, G., Rost, K.: New fast algorithms for Toeplitz-plus-Hankel matrices. SIAM J. Matrix Anal. Appl. 25(3), 842857 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Heinig, G., Rost, K.: Fast algorithms for Toeplitz and Hankel matrices. Linear Algebra Appl. 435(1), 159 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kailath, T., Kung, S.Y., Morf, M.: Displacement ranks of matrices and linear equations. J. Math. Anal. Appl. 68(2), 395407 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kailath, T., Olshevsky, V.: Displacement-structure approach to polynomial Vandermonde and related matrices. Linear Algebra Appl. 261, 49–90 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kailath, T.: Displacement structure and array algorithms. In: Kailath, T., Sayed, A.H. (eds.) Fast Reliable Algorithms for Matrices with Structure. SIAM, Philadelphia (1999)

    Chapter  Google Scholar 

  34. Kailath, T., Sayed, A.H.: Displacement structure: theory and applications. SIAM Rev. 37(3), 297–386 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kaltofen, E., May, J., Yang, Z., Zhi, L.: Approximate factorization of multivariate polynomials using singular value decomposition. J. Symb. Comput. 43(5), 359–376 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lancaster, P., Tismenetsky, M.: The Theory of Matrices with Applications, 2nd edn. Academic Press INC., Orlando (1985)

    MATH  Google Scholar 

  37. Maroulas, J., Barnett, S.: Polynomials with respect to a general basis. I. Theory. J. Math. Anal. Appl. 72, 177–194 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  38. Morf, M.: Fast Algorithms for Multivariable Systems. Ph. D. Thesis, Stanford University (1974)

    Google Scholar 

  39. Noda, M.T., Sasaki, T.: Approximate GCD and its application to ill-conditioned algebraic equations. J. Comput. Appl. Math. 38, 335–351 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  40. Olshevsky, V., Stewart, M.: Stable factorization of Hankel and Hankel-like matrices. Numer. Linear Algebra 8(6–7), 401–434 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pan, V.Y.: Computation of approximate polynomial GCDs and an extension. Inf. Comput. 167(2), 71–85 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pan, V.Y., Tsigaridas, E.: Nearly optimal computations with structured matrices. In: Watt, S.M., Verschelde, J., Zhi, L. (eds.) Proceedings of the International Conference on Symbolic Numeric Computation, China, July 2014, pp. 21–30. ACM Digital Library, New York (2014)

    Google Scholar 

  43. Rost, K.: Generalized companion matrices and matrix representations for generalized Bezoutians. Linear Algebra Appl. 193(1), 151–172 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wimmer, H.K.: On the history of the Bezoutian and the resultant matrix. Linear Algebra Appl. 128, 27–34 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yang, Z.H.: Polynomial Bezoutian matrix with respect to a general basis. Linear Algebra Appl. 331, 165–179 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zarowski, C.J.: A Schur Algorithm for Strongly Regular Toeplitz-plus-Hankel Matrices. In: Proceedings of the 33rd Midwest Symposium on Circuits and Systems, Alta, Aug, 1990. IEEE Xplore Digital Library, vol. 1, pp. 556–559. IEEE, New York (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirani M. Perera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Perera, S.M., Olshevsky, V. (2017). A Fast Schur–Euclid-Type Algorithm for Quasiseparable Polynomials. In: Kotsireas, I., Martínez-Moro, E. (eds) Applications of Computer Algebra. ACA 2015. Springer Proceedings in Mathematics & Statistics, vol 198. Springer, Cham. https://doi.org/10.1007/978-3-319-56932-1_24

Download citation

Publish with us

Policies and ethics