Digital Services Development Using Statistics Tools to Emphasize Pollution Phenomena

  • Costin Gabriel ChiruEmail author
  • Mariana Ionela Mocanu
  • Monica Drăgoicea
  • Anca Daniela Ioniţă
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 279)


This paper presents a perspective related to information service integration for pollution awareness evaluation. The proposed methodology is based on indirect information analysis as retrieved from available literature over time. A time series - type analysis highlighting usage of pollution-related terms is employed. The displayed impact of pollution is evaluated based on public awareness, exposed through digitalized available publications. Estimation techniques and tools are also employed in order to evaluate the exact impact of pollution related events on society. The proposed methodology fosters the design of improved environmental monitoring smart services, specifically addressing the development of data processing components in information sub-systems of EISs (Enterprise Information Systems).


Digital transformation Business process digitalization Digital information services Pollution events 



The research presented in this paper is supported by the DATA4WATER Project: H2020-TWINN-2015, Project ID: 690900, Funded under: H2020-EU.4.b. - Twinning of research institutions.


  1. 1.
    Markovitch, S., Willmott, P.: Accelerating the digitization of business processes. A McKinsey & Company Report.
  2. 2.
    Li, H., Mäntymäki, M., Zhang, X.: Digital Services and Information Intelligence: IFIP Advances in Information and Communication Technology, vol. 445. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Spohrer, J.C., Bassano, C., Piciocchi, P., Siddike, M.A.K.: What makes a system smart? Wise? In: Ahram, T.Z., Karwowski, W. (eds.) Advances in The Human Side of Service Engineering. Advances in Intelligent Systems and Computing, vol. 494, pp. 23–34. Springer, Cham (2017)Google Scholar
  4. 4.
    Moore, S.: Digitalization or Automation - Is There a Difference? Gartner Report.
  5. 5.
    Demirkan, H., Spohrer, J.C.: Emerging service orientations and transformations (SOT). Inf. Syst. Front. 18(3), 407–411 (2016)CrossRefGoogle Scholar
  6. 6.
    Scherer, A., Wünderlich, N.V., von Wangenheim, F.: The value of self-service: long-term effects of technology-based self-service usage on customer retention. MIS Q. 39(1), 177–200 (2015)Google Scholar
  7. 7.
    The acceleration of third platform innovation: here comes the DX economy. i-SCOOP Whitepaper.
  8. 8.
    Ostrom, A.L., Parasuraman, A., Bowen, D.E., Patrcio, L., Voss, C.A.: Service research priorities in a rapidly changing context. J. Serv. Res. 18(2), 127–159 (2015)Google Scholar
  9. 9.
    Pitt, J.: This Pervasive Day: The Potential and Perils of Pervasive Computing. World Scientific, Singapore (2012)Google Scholar
  10. 10.
    Westerman, G., McAfee, A.: The Digital Advantage: How Digital Leaders Outperform Their Peers in Every Industry. MIT Center for Digital Business, Research Report.
  11. 11.
    Böhmann, T., Leimeister, J.M., Möslein, K.: Service systems engineering - a field for future information systems research. Bus. Inf. Syst. Eng. 6(2), 73–79 (2014)Google Scholar
  12. 12.
    Romero, D., Vernadat, F.: Enterprise information systems state of the art: past, present and future trends. Comput. Ind. 79, 3–13 (2016)CrossRefGoogle Scholar
  13. 13.
    Mortality and burden of disease from water and sanitation. World Health Organization Report.
  14. 14.
    Richards, M., Ghanem, M., Osmond, M., Guo, Y., Hassard, J.: Grid-based analysis of air pollution data. Ecol. Model. 194(1–3), 274–286 (2006)CrossRefGoogle Scholar
  15. 15.
    Matějíček, L., Benešová, L., Tonika, J.: Ecological modelling of nitrate pollution in small river basins by spreadsheets and GIS. Ecol. Model. 170(2–3), 245–263 (2003)Google Scholar
  16. 16.
    Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to image databases. In: Sixth International Conference on Computer Vision, pp. 59–66. IEEE Press (1998)Google Scholar
  17. 17.
    Palshikar, G.K.: Simple algorithms for peak detection in time-series, Work-in-Progress.
  18. 18.
    Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  19. 19.
    Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to wordnet: an on-line lexical database. Int. J. Lexicogr. 3(4), 235–244 (1990)CrossRefGoogle Scholar
  20. 20.
    VISUWORDS on-line graphical dictionary.
  21. 21.
    Michel, J.B., Shen, Y.K., Aiden, A.P., Veres, A., Gray, M.K., The Google Books Team, Pickett, J.P., Hoiberg, D., Clancy, D., Norvig, P., Orwant, J., Pinker, S., Nowak, M.A., Aiden, E.L.: Quantitative analysis of culture using millions of digitized books. Science 331(6014), 176–182 (2011)Google Scholar
  22. 22.
    Lin, Y., Michel, J.B., Aiden, E.L., Orwant, J., Brockman, W., Petrov, S.: Syntactic annotations for the google books Ngram corpus. In: ACL 2012 Proceedings of the ACL 2012 System Demonstrations, pp. 169–174. ACM Digital Library (2012)Google Scholar
  23. 23.
    Wijaya, D.T., Yeniterzi, R.: Understanding semantic change of words over centuries. In: International Workshop on DETecting and Exploiting Cultural diversiTy on the Social Web, DETECT 2011, pp. 35–40. ACM Digital Library (2011)Google Scholar
  24. 24.
    Petersen, A.M., Tenenbaum, J., Havlin, S., Stanley, H.E.: Statistical laws governing fluctuations in word use from word birth to word death. Sci. Rep. 2, Article no. 313.
  25. 25.
    Mitra, S., Mitra, R., Riedl, M., Biemann, C., Mukherjee, A., Goyal, P.: That’s sick dude! Automatic identification of word sense change across different timescales. In: 52nd Annual Meeting of the Association for Computational Linguistics, pp. 1020–1029. ACL Press (2014)Google Scholar
  26. 26.
    Acerbi, A., Lampos, V., Garnett, P., Bentley, R.A.: The expression of emotions in 20th century books. PLoS ONE 8(3), e59030 (2013).
  27. 27.
    Popa, T., Rebedea, T., Chiru, C.G.: Detecting and describing historical periods in a large corpora. In: 26th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 764–770. IEEE Press (2014)Google Scholar
  28. 28.
    Control of Pollution Act 1974.
  29. 29.
    Hudson River Cleanup. United States Environmental Protection Agency.
  30. 30.
    Laxman, S.: ‘Smiling Buddha’ had caught US off-guard in 1974. The Times of India, 7 December 2011.
  31. 31.
    Ionita, A.D., Eftimie, C.-T., Lewis, G., Litoiu, M.: Integration of hazard management services. In: Borangiu, T., Drăgoicea, M., Nóvoa, H. (eds.) IESS 2016. LNBIP, vol. 247, pp. 355–364. Springer, Cham (2016). doi: 10.1007/978-3-319-32689-4_27 Google Scholar
  32. 32.
    Ioniţă, A.D., Liţoiu, M., Lewis, G.: Migrating Legacy Applications: Challenges in Service Oriented Architecture and Cloud Computing Environments. IGI Global, Hershey (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Costin Gabriel Chiru
    • 1
    Email author
  • Mariana Ionela Mocanu
    • 1
  • Monica Drăgoicea
    • 1
  • Anca Daniela Ioniţă
    • 1
  1. 1.Faculty of Automatic Control and ComputersUniversity Politehnica of BucharestBucharestRomania

Personalised recommendations