Skip to main content

Smell and Meaning: An OERP Study

  • Chapter
  • First Online:
Multidisciplinary Approaches to Neural Computing

Abstract

The purpose of this work is to investigate the olfactory response to a neuter and a smell stimulation through Olfactory Event Related Potentials (OERP). We arranged an experiment of olfactory stimulation by analyzing Event Related Potential during perception of 2 odor stimuli: pleasant (Rose, 2-phenyl ethanol C2H4O2) and neuter (Neuter, Vaseline Oil CH2). We recruited 15 adult safe non-smokers volunteers. In order to record OERP, we used VOS EEG, a new device dedicated to odorous stimulation in EEG. After the OERP task, the subject filled a visual analogic scale, regarding the administered smell, on three dimensions: pleasantness (P), arousing (A) and familiarity (F). We performed an artificial neural network analysis that highlighted three groups of significant features, one for each amplitude component. Three neural network classifiers were evaluated in terms of accuracy on both full and restricted datasets, showing the best performance with the latter. The improvement of the accuracy rate in all VAS classifications was: 13.93% (A), 64.81% (F), 9.8% (P) for P300 amplitude (Fz); 16.28% (A), 49.46% (F), 24% (P) for N400 amplitude (Cz, Fz, O2, P8); 110.42% (A), 21.19% (F), 24.1% (P) for N600 amplitude (Cz, Fz). Main results suggested that in smell presentation we can observe the involvement of slow Event-Related-Potentials, like N400 and N600, ERP involved in stimulus encoding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Young, J., Shykind, B., Lane, R., Priddy, L., Ross, J., Walker, M., Williams, E., Trask, B.: Odorant receptor expressed sequence tags demonstrate olfactory expression of over 400 genes, extensive alternate splicing and unequal expression level. Genome Biol. 4, 1–15 (2003)

    Article  Google Scholar 

  2. Dalton, P., Doolittle, N., Breslin, P.: Gender specific induction of enhanced sensitivity to odors. Nat. Neurosci. 199–200 (2002)

    Google Scholar 

  3. Laska, M., Ayabe-Kanamura, S., Hubener, F., Saito, S.: Olfactory discrimination ability for aliphatic odorants as a function of oxygen moiety. Chem. Senses 189–197 (2000)

    Google Scholar 

  4. Lawless, H., Egen, T.: Association to odors: interference, mnemonic and verbal labelling. J. Exp. Psychol.: Hum. Learn. Memory 3, 52–59 (1977)

    Google Scholar 

  5. Djordjevic, J., Zatorre, R., Petrides, M., Boyle, J., Gotam, M.: Functional neuroimaging of odor imagery. NeuroImage 791–801 (2004)

    Google Scholar 

  6. Porter, J., Anand, T., Johnson, B., Khan, R., Sobel, N.: Brain mechanisms for extraction spatial information from smell. Neuron 581–592 (2005)

    Google Scholar 

  7. Rozin, P.: “Taste smell confusions” and the duality of the olfactory sense. Percept. Psychophys. 397–401 (1982)

    Google Scholar 

  8. Small, D., Gerber, J., Mak, Y., Hummel, T.: Differential neural responses evoked by orthonasal versus retronasal odorant perception in humans. Neuron 593–605 (2005)

    Google Scholar 

  9. Ademoye, O., Ghinea, G., Oluwakemi, A.: Olfaction-enhanced multimedia: perspectives and challenges. Multimedia Tools Appl. 55(3), 601–626 (2011)

    Article  Google Scholar 

  10. Zucco, G.M.: Anomalies in cognition: olfactory memory. Eur. Psychol. 77–86 (2003). doi:10.1027/1016-9040.8.2.77

  11. Kim, Y., Watanuki, S.: Characteristics of electroencephalographic responses induced by a pleasant and an unpleasant odor. J. Physiol. Anthropol. Appl. Hum. Sci. 22(6), 285–291 (2003)

    Article  Google Scholar 

  12. Invitto, S., Capone, S., Montagna, G., Siciliano, P.A.: US2017127971 (A1)—Method and system for measuring physiological parameters of a subject undergoing an olfactory stimulation (2017)

    Google Scholar 

  13. Menolascina, F., Tommasi, S., Paradiso, A., Cortellino, M., Bevilacqua, V., Mastronardi, G.: Novel data mining techniques in aCGH based breast cancer subtypes profiling: the biological perspective. In: IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, 2007. CIBCB’07, pp. 9–16. IEEE (2007)

    Google Scholar 

  14. Bevilacqua, V., Mastronardi, G., Menolascina, F., Pannarale, P., Pedone, A.: A novel multi-objective genetic algorithm approach to artificial neural network topology optimisation: the breast cancer classification problem. In: International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, pp. 1958–1965. IEEE (2006)

    Google Scholar 

  15. Bevilacqua, V., Brunetti, A., Triggiani, M., Magaletti, D., Telegrafo, M., Moschetta, M.: An optimized feed-forward artificial neural network topology to support radiologists in breast lesions classification. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 1385–1392. ACM (2016)

    Google Scholar 

  16. Bevilacqua, V., Cassano, F., Mininno, E., Iacca, G.: Optimizing feed-forward neural network topology by multi-objective evolutionary algorithms: a comparative study on biomedical datasets. In: Advances in Artificial Life, Evolutionary Computation and Systems Chemistry, pp. 53–64. Springer International Publishing (2015)

    Google Scholar 

  17. Olofsson, J.K., Hurley, R.S., Bowman, N.E., Bao, X., Mesulam, M.M., Gottfried, J.: A designated odor-language integration system in the human brain. J. Neurosci. 34(45), 14864–14873 (2014)

    Google Scholar 

  18. Invitto, S., Faggiano, C., Sammarco, S., De Luca, V., De Paolis, L.: Haptic, virtual interaction and motor imagery: entertainment tools and psychophysiological testing. Sensors 16(3), 394 (2016)

    Article  Google Scholar 

  19. Gilbert, A.N., Crouch, M., Kemp, S.E.: Olfactory and visual mental imagery. J. Mental Imagery 22(3&4), 137–146 (1998)

    Google Scholar 

  20. Gibbs, J., Raymond, W., Berg, E.: Mental imagery and embodied activity. J. Mental Imagery (2002)

    Google Scholar 

Download references

Acknowledgements

‘Università del Salento—publishing co-funded with ‘5 for Thousand Research Fund’.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sara Invitto or Vitoantonio Bevilacqua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Invitto, S. et al. (2018). Smell and Meaning: An OERP Study. In: Esposito, A., Faudez-Zanuy, M., Morabito, F., Pasero, E. (eds) Multidisciplinary Approaches to Neural Computing. Smart Innovation, Systems and Technologies, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-319-56904-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56904-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56903-1

  • Online ISBN: 978-3-319-56904-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics