Cell Membrane Electropulsation: Chemical Analysis of Cell Membrane Modifications and Associated Transport Mechanisms

  • Antoine Azan
  • Florian Gailliègue
  • Lluis M. Mir
  • Marie Breton
Part of the Advances in Anatomy, Embryology and Cell Biology book series (ADVSANAT, volume 227)


The transport of substances across the cell membrane is complex because the main physiological role of the membrane is the control of the substances that would enter or exit the cells. Life would not be possible without this control. Cell electropulsation corresponds to the delivery of electric pulses to the cells and comprises cell electroporation and cell electropermeabilization. Cell electropulsation allows for the transport of non-permeant molecules across the membrane, bypassing the physiological limitations. In this chapter we discuss the changes occurring in the cell membrane during electroporation or electropermeabilization as they allow to understand which molecules can be transported as well as when and how their transport can occur. Electrophoretic or diffusive transports across the cell membrane can be distinguished. This understanding has a clear impact on the choice of the electrical parameters to be applied to the cells as well as on other aspects of the experimental protocols that have to be set to load the cells with non-permeant molecules.


  1. Azan A, Untereiner V, Gobinet C, Sockalingum GD, Breton M, Piot O, Mir LM (2017) Demonstration of the protein involvement in cell electropermeabilization using confocal Raman microspectroscopy. Sci Rep 7:297–306CrossRefGoogle Scholar
  2. Benov LC, Antonov PA, Ribarov SR (1994) Oxidative damage of the membrane lipids after electroporation. Gen Physiol Biophys 13:85–97PubMedGoogle Scholar
  3. Bobinnec Y, Khodjakov A, Mir LM, Rieder CL, Eddé B, Bornens M (1998) Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J Cell Biol 143:1575–1589CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bonn M, Bakker HJ, Ghosh A, Yamamoto S, Sovago M, Campen RK (2010) Structural inhomogeneity of interfacial water at lipid monolayers revealed by surface-specific vibrational pump−probe spectroscopy. J Am Chem Soc 132:14971–14978CrossRefPubMedGoogle Scholar
  5. Bonnafous P, Vernhes M, Teissié J, Gabriel B (1999) The generation of reactive-oxygen species associated with long-lasting pulse-induced electropermeabilisation of mammalian cells is based on a non-destructive alteration of the plasma membrane. Biochim Biophys Acta 1461:123–134CrossRefPubMedGoogle Scholar
  6. Breton M, Delemotte L, Silve A, Mir LM, Tarek M (2012) Transport of siRNA through lipid membranes driven by nanosecond electric pulses: an experimental and computational study. J Am Chem Soc 134:13938–13941CrossRefPubMedGoogle Scholar
  7. Chen X, Hua W, Huang Z, Allen HC (2010) Interfacial water structure associated with phospholipid membranes studied by phase-sensitive vibrational sum frequency generation spectroscopy. J Am Chem Soc 132:11336–11342CrossRefPubMedGoogle Scholar
  8. Cheng J-X, Pautot S, Weitz DA, Xie XS (2003) Ordering of water molecules between phospholipid bilayers visualized by coherent anti-stokes Raman scattering microscopy. Proc Natl Acad Sci U S A 100:9826–9830CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cournia Z, Allen TW, Andricioaei I, Antonny B, Baum D, Brannigan G, Buchete N-V, Deckman JT, Delemotte L, Del Val C et al (2015) Membrane protein structure, function, and dynamics: a perspective from experiments and theory. J Membr Biol 248:611–640CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dehez F, Delemotte L, Kramar P, Miklavčič D, Tarek M (2014) Evidence of conducting hydrophobic nanopores across membranes in response to an electric field. J Phys Chem C 118:6752–6757Google Scholar
  11. Delemotte L, Tarek M (2012) Molecular dynamics simulations of lipid membrane electroporation. J Membr Biol 245:531–543CrossRefPubMedGoogle Scholar
  12. Downes A, Mouras R, Bagnaninchi P, Elfick A (2011) Raman spectroscopy and CARS microscopy of stem cells and their derivatives. J Raman Spectrosc 42:1864–1870CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gabriel B, Teissié J (1994) Generation of reactive-oxygen species induced by electropermeabilization of Chinese hamster ovary cells and their consequence on cell viability. Eur J Biochem 223:25–33CrossRefPubMedGoogle Scholar
  14. Gruenbaum SM, Skinner JL (2011) Vibrational spectroscopy of water in hydrated lipid multi-bilayers. I. Infrared spectra and ultrafast pump-probe observables. J Chem Phys 135:34–36Google Scholar
  15. Kong K, Kendall C, Stone N, Notingher I (2015) Raman spectroscopy for medical diagnostics – from in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev 89:121–134CrossRefPubMedGoogle Scholar
  16. Krassowska W, Filev PD (2007) Modeling electroporation in a single cell. Biophys J 92:404–417CrossRefPubMedGoogle Scholar
  17. Leguèbe M, Silve A, Mir LM, Poignard C (2014) Conducting and permeable states of cell membrane submitted to high voltage pulses: mathematical and numerical studies validated by the experiments. J Theor Biol 360:83–94CrossRefPubMedGoogle Scholar
  18. Litster JD (1975) Stability of lipid bilayers and red blood cell membranes. Phys Lett A 53:193–194CrossRefGoogle Scholar
  19. Lopez CF, Lopez CF, Nielsen SO, Klein ML, Moore PB (2004) Hydrogen bonding structure and dynamics of water at the dimyristoylphosphatidylcholine lipid bilayer surface from a molecular dynamics simulation. J Phys Chem B 108:6603–6610CrossRefGoogle Scholar
  20. Maiti NC, Apetri MM, Zagorski MG, Carey PR, Anderson VE (2004) Raman spectroscopic characterization of secondary structure in natively unfolded proteins: alpha-synuclein. J Am Chem Soc 126:2399–2408CrossRefPubMedGoogle Scholar
  21. de Menorval M-A, Andre FM, Silve A, Dalmay C, Français O, Le Pioufle B, Mir LM (2016) Electric pulses: a flexible tool to manipulate cytosolic calcium concentrations and generate spontaneous-like calcium oscillations in mesenchymal stem cells. Sci Rep 6:32331CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mir LM (2008) Application of electroporation gene therapy: past, current, and future. Methods Mol Biol 423:3–17CrossRefPubMedGoogle Scholar
  23. Nagata Y, Mukamel S (2010) Vibrational sum-frequency generation spectroscopy at the water/lipid interface: molecular dynamics simulation study. J Am Chem Soc 132:6434–6442CrossRefPubMedPubMedCentralGoogle Scholar
  24. Neumann E, Katchalsky A (1972) Long-lived conformation changes induced by electric impulses in biopolymers. Proc Natl Acad Sci U S A 69:993–997CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nihonyanagi S, Mondal JA, Yamaguchi S, Tahara T (2013) Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation. Annu Rev Phys Chem 64:579–603CrossRefPubMedGoogle Scholar
  26. Pakhomova ON, Khorokhorina VA, Bowman AM, Rodaitė-Riševičienė R, Saulis G, Xiao S, Pakhomov AG (2012) Oxidative effects of nanosecond pulsed electric field exposure in cells and cell-free media. Arch Biochem Biophys 527:55–64CrossRefPubMedPubMedCentralGoogle Scholar
  27. Pastushenko VF, Chizmadzhev YA (1982) Stabilization of conducting pores in BLM by electric current. Gen Physiol Biophys 1:43–52Google Scholar
  28. Pavlin M, Miklavčič D (2008) Theoretical and experimental analysis of conductivity, ion diffusion and molecular transport during cell electroporation – relation between short-lived and long-lived pores. Bioelectrochemistry 74:38–46CrossRefPubMedGoogle Scholar
  29. Poignard C, Silve A, Wegner L (2016) Different approaches used in modeling of cell membrane electroporation. Springer, New YorkCrossRefGoogle Scholar
  30. Raman CV (1928) A new radiation. Indian J Phys 2:387–398Google Scholar
  31. Rems L, Tarek M, Casciola M, Miklavčič D (2016) Properties of lipid electropores II: comparison of continuum-level modeling of pore conductance to molecular dynamics simulations. Bioelectrochemistry 112:112–124CrossRefPubMedGoogle Scholar
  32. Salomone F, Breton M, Leray I, Cardarelli F, Boccardi C, Bonhenry D, Tarek M, Mir LM, Beltram F (2014) High-yield nontoxic gene transfer through conjugation of the CM 18 -tat 11 chimeric peptide with nanosecond electric pulses. Mol Pharm 11:2466–2474CrossRefPubMedGoogle Scholar
  33. Schoenbach KH, Beebe SJ, Buescher ES (2001) Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22:440–448CrossRefPubMedGoogle Scholar
  34. Silve A, Leray I, Mir LM (2012a) Demonstration of cell membrane permeabilization to medium-sized molecules caused by a single 10 ns electric pulse. Bioelectrochemistry 87:260–264CrossRefPubMedGoogle Scholar
  35. Silve A, Dorval N, Schmid T, Mir LM, Attal-Tretout B (2012b) A wide-field arrangement for single-shot CARS imaging of living cells. J Raman Spectrosc 43:644–650CrossRefGoogle Scholar
  36. Smith GPS, McGoverin CM, Fraser SJ, Gordon KC (2015) Raman imaging of drug delivery systems. Adv Drug Deliv Rev 89:21–41CrossRefPubMedGoogle Scholar
  37. Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053CrossRefPubMedPubMedCentralGoogle Scholar
  38. Teissie J (2007) Biophysical effects of electric fields on membrane water interfaces: a mini review. Eur Biophys J 36:967–972CrossRefPubMedGoogle Scholar
  39. Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10CrossRefPubMedPubMedCentralGoogle Scholar
  40. Tokman M, Lee JH, Levine Z a, Ho M-CC, Colvin ME, Vernier PT (2013) Electric field-driven water dipoles: nanoscale architecture of electroporation. PLoS One 8:e61111CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ullery JC, Tarango M, Roth CC, Ibey BL (2015) Activation of autophagy in response to nanosecond pulsed electric field exposure. Biochem Biophys Res Commun 458:411–417CrossRefPubMedGoogle Scholar
  42. Unterreitmeier S, Fuchs A, Schäffler T, Heym RG, Frishman D, Langosch D (2007) Phenylalanine promotes interaction of transmembrane domains via GxxxG motifs. J Mol Biol 374:705–718CrossRefPubMedGoogle Scholar
  43. Vernier PT, Levine ZA, Wu Y-H, Joubert V, Ziegler MJ, Mir LM, Tieleman DP (2009) Electroporating fields target oxidatively damaged areas in the cell membrane. PLoS One 4:e7966CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wang K, Zhao Y, Chen D, Fan B, Lu Y, Chen L, Long R, Wang J, Chen J (2017) Specific membrane capacitance, cytoplasm conductivity and instantaneous Young’s modulus of single tumour cells. Sci Data 4:170015CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313(Pt 1):17–29CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wong-Ekkabut J, Xu ZT, Triampo W, Tang IM, Tieleman DP, Monticelli L (2007) Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys J 93:4225–4236CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ziegler MJ, Vernier PT (2008) Interface water dynamics and porating electric fields for phospholipid bilayers. J Phys Chem B 112:13588–13596CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Antoine Azan
    • 1
  • Florian Gailliègue
    • 1
  • Lluis M. Mir
    • 1
  • Marie Breton
    • 1
  1. 1.Vectorology and Anticancer Therapies, UMR8203, Univ. Paris-Sud, CNRS, Gustave Roussy, Université Paris-SaclayVillejuifFrance

Personalised recommendations