Advertisement

Atomistic Simulations of Electroporation of Model Cell Membranes

Chapter
Part of the Advances in Anatomy, Embryology and Cell Biology book series (ADVSANAT, volume 227)

Abstract

Electroporation is a phenomenon that modifies the fundamental function of the cell since it perturbs transiently or permanently the integrity of its membrane. Today, this technique is applied in fields ranging from biology and biotechnology to medicine, e.g., for drug and gene delivery into cells, tumor therapy, etc., in which it made it to preclinical and clinical treatments. Experimentally, due to the complexity and heterogeneity of cell membranes, it is difficult to provide a description of the electroporation phenomenon in terms of atomically resolved structural and dynamical processes, a prerequisite to optimize its use. Atomistic modeling in general and molecular dynamics (MD) simulations in particular have proven to be an effective approach for providing such a level of detail. This chapter provides the reader with a comprehensive account of recent advances in using such a technique to complement conventional experimental approaches in characterizing several aspects of cell membranes electroporation.

Notes

Acknowledgments

Simulations were performed using HPC resources from GENCI-CINES. M.T. acknowledges the support of the French Agence Nationale de la Recherche, under grant (ANR-10_BLAN-916-03-INTCELL) and support from the “Contrat État Plan Region Lorraine 2015-2020” subproject MatDS. The studies were conducted in the scope of the European Associated Laboratory for Pulsed Electric Field Applications in Biology and Medicine (LEA EBAM).

References

  1. Abidor IG, Arakelyan VB, Chernomordik LV, Chizmadzhev YA, Pastushenko VF, Tarasevich MP (1979) Electric breakdown of bilayer lipid membranes. I. The main experimental facts and their qualitative discussion. J Electroanal Chem 104:37–52Google Scholar
  2. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon Press, OxfordGoogle Scholar
  3. Anézo C, de Vries AH, Höltje HD, Tieleman DP, Marrink SJ (2003) Methodological issues in lipid bilayer simulations. J Phys Chem B 107:9424–9433CrossRefGoogle Scholar
  4. Benov LC, Antonov PA, Ribarov SR (1994) Oxidative damage of the membrane lipids after electroporation. Gen Physiol Biophys 13:85–97PubMedGoogle Scholar
  5. Benz R, Beckers F, Zimmerman U (1979) Reversible electrical breakdown of lipid bilayer membranes – charge-pulse relaxation study. J Membr Biol 48:181–204CrossRefPubMedGoogle Scholar
  6. Berkowitz ML, Raghavan MJ (1991) Computer simulation of a water/membrane interface. Langmuir 7:1042–1044CrossRefGoogle Scholar
  7. Böckmann RA, de Groot BL, Kakorin S, Neumann E, Grubmüller H (2008) Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys J 95:1837–1850CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bowman AM, Nesin OM, Pakhomova ON, Pakhomov AG (2010) Analysis of plasma membrane integrity by fluorescent detection of Tl(+) uptake. J Membr Biol 236:15–26Google Scholar
  9. Breton M, Mir LM (2012) Microsecond and nanosecond electric pulses in cancer treatments. Bioelectromagnetics 33:106–123CrossRefPubMedGoogle Scholar
  10. Breton M, Delemotte L, Silve A, Mir LM, Tarek M (2012) Transport of siRNA through lipid membranes driven by nanosecond electric pulses: an experimental and computational study. J Am Chem Soc 134:13938–13941Google Scholar
  11. Cadossi R, Ronchetti M, Cadossi M (2014) Locally enhanced chemotherapy by electroporation: clinical experiences and perspective of use of electrochemotherapy. Future Oncol 10:877–890Google Scholar
  12. Cascales JJL, de la Torre JG, Marrink SJ, HJC B (1996) Molecular dynamics simulation of a charged biological membrane. J Chem Phys 104:2713–2720CrossRefGoogle Scholar
  13. Casciola M, Tarek M (2016) A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields. Biochim Biophys Acta Biomembr 1858:2278–2289Google Scholar
  14. Casciola M, Bonhenry D, Liberti M, Apollonio F, Tarek M (2014) A molecular dynamic study of cholesterol rich lipid membranes: comparison of electroporation protocols. Bioelectrochemistry 100:11–17Google Scholar
  15. Casciola M, Kasimova MA, Rems L, Zullino S, Apollonio F, Tarek M (2016) Properties of lipid electropores I: molecular dynamics simulations of stabilized pores by constant charge imbalance properties of lipid electropores I: molecular dynamics simulations of stabilized pores by constant charge imbalance. Bioelectrochemistry 109:108–116Google Scholar
  16. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) Amber 10. University of California, San FransiscoGoogle Scholar
  17. Chen C, Smye SW, Robinson MP, Evans JA (2006) Membrane electroporation theories: a review. Med Biol Eng Comput 44:5–14CrossRefPubMedGoogle Scholar
  18. Chipot C, Klein ML, Tarek M, Yip S (2005) Modeling lipid membranes. In: Yip S (ed) Handbook of materials modeling. Springer, Dordrecht, pp 929–958CrossRefGoogle Scholar
  19. Chiu SW, Clark M, Jakobsson E, Subramaniam S, Scott HL (1999) Optimization of hydrocarbon chain interaction parameters: application to the simulation of fluid phase lipid bilayers. J Phys Chem B 103:6323–6327CrossRefGoogle Scholar
  20. Chiu SW, Vasudevan S, Jakobsson E, Mashl RJ, Scott HL (2003) Structure of sphingomyelin bilayers: a simulation study. Biophys J 85:3624–3635CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chopinet L, Rols M-P (2015) Nanosecond electric pulses: a mini-review of the present state of the art. Bioelectrochemistry 103:2–6Google Scholar
  22. Dahlberg M, Maliniak A (2008) Molecular dynamics simulations of cardiolipin bilayers. J Phys Chem B 112:11655–11663CrossRefPubMedGoogle Scholar
  23. Damodaran KV, Merz KM (1994) A comparison of dmpc and dlpe based lipid bilayers. Biophys J 66:1076–1087CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dehez F, Delemotte L, Kramar P, Miklavčič D, Tarek M (2014) Evidence of conducting hydrophobic nanopores across membranes in response to an electric field. J Phys Chem C 118:6752–6757Google Scholar
  25. Delemotte L, Tarek M (2012) Molecular dynamics simulations of lipid membrane electroporation. J Membr Biol 245:531–543Google Scholar
  26. Delemotte L, Dehez F, Treptow W, Tarek M (2008) Modeling membranes under a transmembrane potential. J Phys Chem B 112:5547–5550CrossRefPubMedGoogle Scholar
  27. Deng J, Schoenbach KH, Stephen Buescher E, Hair PS, Fox PM, Beebe SJ (2003) The effects of intense submicrosecond electrical pulses on cells. Biophys J 84:2709–2714Google Scholar
  28. Feller SE, Gawrisch K, MacKerell AD (2002) Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. J Am Chem Soc 124:318–326CrossRefPubMedGoogle Scholar
  29. Fernández ML, Risk M, Reigada R, Vernier PT (2012) Size-controlled nanopores in lipid membranes with stabilizing electric fields. Biochem Biophys Res Commun 423:325–330CrossRefPubMedGoogle Scholar
  30. Gennis RB (1989) Biomembranes: molecular structure and function. Springer, HeidelbergCrossRefGoogle Scholar
  31. Gurtovenko AA, Lyulina AS (2014) Electroporation of asymmetric phospholipid membranes. J Phys Chem B 118:9909–9918Google Scholar
  32. Gurtovenko AA, Vattulainen I (2007) Ion leakage through transient water pores in protein-free lipid membranes driven by transmembrane ionic charge imbalance. Biophys J 92:1878–1890Google Scholar
  33. Gurtovenko AA, Vattulainen I (2008) Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane. J Phys Chem B 112:1953–1962CrossRefPubMedGoogle Scholar
  34. Gurtovenko AA, Anwar J, Vattulainen I (2010) Defect-mediated trafficking across cell membranes: insights from in silico modeling. Chem Rev 110(10):6077–6103CrossRefPubMedGoogle Scholar
  35. Hibino M, Shigemori M, Itoh H, Nagayama K, Kinosita K Jr (1991) Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. Biophys J 59:209–220CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ho MC, Casciola M, Levine ZA, Vernier PT (2013) Molecular dynamics simulations of ion conductance in field-stabilized nanoscale lipid electropores. J Phys Chem B 117:11633–11640CrossRefPubMedGoogle Scholar
  37. Hu Q, Viswanadham S, Joshi RP, Schoenbach KH, Beebe SJ, Blackmore PF (2005) Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse. Phys Rev E Stat Nonlin Soft Matter Phys 71:31914Google Scholar
  38. Kakorin S, Brinkmann U, Neumann E (2005) Cholesterol reduces membrane electroporation and electric deformation of small bilayer vesicles. Biophys Chem 117:155–171Google Scholar
  39. Kalinowski S, Ibron G, Bryl K, Figaszewski Z (1998) Chronopotentiometric studies of electroporation of bilayer lipid membranes. Biochim Biophys Acta 1369:204–212CrossRefPubMedGoogle Scholar
  40. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell JAD, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843CrossRefPubMedPubMedCentralGoogle Scholar
  41. Koronkiewicz S, Kalinowski S (2004) Influence of cholesterol on electroporation of bilayer lipid membranes: chronopotentiometric studies. Biochim Biophys Acta Biomembr 1661:196–203Google Scholar
  42. Koronkiewicz S, Kalinowski S, Bryl K (2002) Programmable chronopotentiometry as a tool for the study of electroporation and resealing of pores in bilayer lipid membranes. Biochim Biophys Acta 1561:222–229CrossRefPubMedGoogle Scholar
  43. Kotnik T, Miklavcic D (2006) Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys J 90:480–491CrossRefPubMedGoogle Scholar
  44. Kotnik T, Miklavcic D, Slivnik T (1998) Time course of transmembrane voltage induced by time-varying electric fields – a method for theoretical analysis and its application. Bioelectrochem Bioenerg 45:3–16CrossRefGoogle Scholar
  45. Kotnik T, Pucihar G, Miklavčič D (2010) Induced transmembrane voltage and its correlation with electroporation-mediated molecular transport. J Membr Biol 236:3–13Google Scholar
  46. Kotulska M (2007) Natural fluctuations of an electropore show fractional Lévy stable motion. Biophys J 92:2412–2421Google Scholar
  47. Kramar P, Delemotte L, Maček Lebar A, Kotulska M, Tarek M, Miklavčič D (2012) Molecular level characterization of lipid membranes electroporation using linearly rising current experiments. J Membr Biol 245:651–659Google Scholar
  48. Krassen H, Pliquett U, Neumann E (2007) Nonlinear current–voltage relationship of the plasma membrane of single CHO cells. Bioelectrochemistry 70:71–77Google Scholar
  49. Kutzner C, Grubmüller H, de Groot BL, Zachariae U (2011) Computational electrophysiology: the molecular dynamics of ion channel permeation and selectivity in atomistic detail. Biophys J 101:809–817CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lakshmanan S, Gupta GK, Avci P, Chandran R, Sadasivam M, Jorge AES, Hamblin MR (2014) Physical energy for drug delivery; poration, concentration and activation. Adv Drug Deliv Rev 71:98–114Google Scholar
  51. Leach AR (2001) Molecular modelling: principles and applications, 2nd edn. Prentice Hall, Harlow/MunichGoogle Scholar
  52. Leontiadou H, Mark AE, Marrink S-J (2007) Ion transport across transmembrane pores. Biophys J 92:4209–4215Google Scholar
  53. Levine ZA, Vernier PT (2010) Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J Membr Biol 236:27–36Google Scholar
  54. Levine ZA, Vernier PT (2012) Calcium and phosphatidylserine inhibit lipid electropore formation and reduce pore lifetime. J Membr Biol 245:599–610Google Scholar
  55. Li Z, Venable RM, Rogers LA, Murray D, Pastor RW (2009) Molecular dynamics simulations of PIP2 and PIP3 in lipid bilayers: determination of ring orientation, and the effects of surface roughness on a poisson-boltzmann description. Biophys J 97:155–163CrossRefPubMedPubMedCentralGoogle Scholar
  56. Maccarrone M, Rosato N, Agrò AF (1995) Electroporation enhances cell membrane peroxidation and luminescence. Biochem Biophys Res Commun 206:238–245Google Scholar
  57. Miklavčič D, Mali B, Kos B, Heller R, Serša G (2014) Electrochemotherapy: from the drawing board into medical practice. Biomed Eng Online 13:29Google Scholar
  58. Mir LM, Banoun H, Paoletti C (1988) Introduction of definite amounts of nonpermeant molecules into living cells after electropermeabilization – direct access to the cytosol. Exp Cell Res 175:15–25CrossRefPubMedGoogle Scholar
  59. Mukhopadhyay P, Monticelli L, Tieleman DP (2004) Molecular dynamics simulation of a palmitoyl-oleoyl phosphatidylserine bilayer with Na+ Counterions and NaCl. Biophys J 86:1601–1609CrossRefPubMedPubMedCentralGoogle Scholar
  60. Nesin OM, Pakhomova ON, Xiao S, Pakhomov AG (2011) Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses. Biochim Biophys Acta Biomembr 1808:792–801CrossRefGoogle Scholar
  61. Neumann E, Sowers AE, Jordan CA (1989) Electroporation and electrofusion in cell biology. Plenum Press, New YorkCrossRefGoogle Scholar
  62. Pakhomov AG, Gianulis E, Vernier PT, Semenov I, Xiao S, Pakhomova ON (2015) Multiple nanosecond electric pulses increase the number but not the size of long-lived nanopores in the cell membrane. Biochim Biophys Acta 1848:958–966Google Scholar
  63. Pandit AS, Bostick D, Berkowitz ML (2003) Molecular dynamics simulation of a dipalmitoylphosphatidylcholine bilayer with NaCl. Biophys J 84:3743–3750CrossRefPubMedPubMedCentralGoogle Scholar
  64. Patel RY, Balaji PV (2008) Characterization of symmetric and asymmetric lipid bilayers composed of varying concentrations of ganglioside GM1 and DPPC. J Phys Chem B 112:3346–3356CrossRefPubMedGoogle Scholar
  65. Pauly H, Schwan HP (1959) Uber Die Impedanz Einer Suspension Von Kugelformigen Teilchen Mit Einer Schale – Ein Modell Fur Das Dielektrische Verhalten Von Zellsuspensionen Und Von Proteinlosungen. Z Naturforsch B 14:125–131CrossRefGoogle Scholar
  66. Pavlin M, Kandušer M, Reberšek M, Pucihar G, Hart FX, Magjarevićcacute, Ratko, Miklavčič D (2005) Effect of cell electroporation on the conductivity of a cell suspension. Biophys J 88:4378–4390Google Scholar
  67. Piggot TJ, Holdbrook DA, Khalid S (2011) Electroporation of the E. coli and S. aureus membranes: molecular dynamics simulations of complex bacterial membranes. J Phys Chem B 115:13381–13388Google Scholar
  68. Polak A, Bonhenry D, Dehez F, Kramar P, Miklavčič D, Tarek M (2013) On the electroporation thresholds of lipid bilayers: molecular dynamics simulation investigations. J Membr Biol 246:843–850Google Scholar
  69. Polak A, Tarek M, Tomšič M, Valant J, Ulrih NP, Jamnik A, Kramar P, Miklavčič D (2014) Electroporation of archaeal lipid membranes using MD simulations. Bioelectrochemistry 100:18–26Google Scholar
  70. Pucihar G, Kotnik T, Miklavcic D, Teissie J (2008) Kinetics of transmembrane transport of small molecules into electropermeabilized cells. Biophys J 95:2837–2848CrossRefPubMedPubMedCentralGoogle Scholar
  71. Rög T, Murzyn K, Pasenkiewicz-Gierula M (2002) The dynamics of water at the phospholipid bilayer: a molecular dynamics study. Chem Phys Lett 352:323–327CrossRefGoogle Scholar
  72. Rog T, Martinez-Seara H, Munck N, Oresic M, Karttunen M, Vattulainen I (2009) Role of cardiolipins in the inner mitochondrial membrane: insight gained through atom-scale simulations. J Phys Chem B 113:3413–3422CrossRefPubMedGoogle Scholar
  73. Roux B (1997) Influence of the membrane potential on the free energy of an intrinsic protein. Biophys J 73:2980–2989CrossRefPubMedPubMedCentralGoogle Scholar
  74. Sachs JN, Crozier PS, Woolf TB (2004) Atomistic simulations of biologically realistic transmembrane potential gradients. J Chem Phys 121:10847–10851CrossRefPubMedGoogle Scholar
  75. Saiz L, Klein ML (2002) Computer simulation studies of model biological membranes. Acc Chem Res 35:482–489CrossRefPubMedGoogle Scholar
  76. Salomone F, Breton M, Leray I, Cardarelli F, Boccardi C, Bonhenry D, Tarek M, Mir LM, Beltram F (2014) High-yield nontoxic gene transfer through conjugation of the CM 18-Tat11 chimeric peptide with nanosecond electric pulses. Mol Pharm 11:2466–2474Google Scholar
  77. Schnitzer E, Pinchuk I, Lichtenberg D (2007) Peroxidation of liposomal lipids. Eur Biophys J 36:499–515CrossRefPubMedGoogle Scholar
  78. Schuler LD, Daura X, van Gunsteren WF (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem 22:1205–1218CrossRefGoogle Scholar
  79. Silve A, Leray I, Mir LM (2012) Demonstration of cell membrane permeabilization to medium-sized molecules caused by a single 10 ns electric pulse. Bioelectrochemistry 87:260–264Google Scholar
  80. Sridhara V, Joshi RP (2014) Numerical study of lipid translocation driven by nanoporation due to multiple high-intensity, ultrashort electrical pulses. Biochim Biophys Acta Biomembr 1838:902–909Google Scholar
  81. Szabo M, Wallace MI (2015) Imaging potassium-flux through individual electropores in droplet interface bilayers. Biochim Biophys Acta 1858(3):613–617Google Scholar
  82. Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053CrossRefPubMedPubMedCentralGoogle Scholar
  83. Tarek M, Delemotte L (2010) Electroporation of lipid membranes. In: Advanced Electroporation Techniques in Biology and Medicine. CRC Press, Boca Raton, pp 141–160Google Scholar
  84. Tarek M, Tobias DJ, Chen SH, Klein ML (2001) Short wavelength collective dynamics in phospholipid bilayers: a molecular dynamics study. Phys Rev Lett 87:238101CrossRefPubMedGoogle Scholar
  85. Teissie J (2013) Electrically mediated gene delivery: Basic and translational concepts, novel gene therapy approaches, Prof. Ming Wei (ed.), InTech, doi: 10.5772/54780. Available from: https://www.intechopen.com/books/novel-gene-therapy-approaches/electrically-mediated-gene-delivery-basicand-translational-concepts
  86. Teissié J, Eynard N, Gabriel B, Rols MP (1999) Electropermeabilization of cell membranes. Adv Drug Deliv Rev 35:3–19Google Scholar
  87. Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10 Google Scholar
  88. Tobias DJ, Tu K, Klein ML (1997) Assessment of all–atom potentials for modeling membranes: molecular dynamics simulations of solid and liquid alkanes and crystals of phospholipid fragments. J Chim Phys 94:1482–1502CrossRefGoogle Scholar
  89. Vacha R, Berkowitz ML, Jungwirth P (2009) Molecular model of a cell plasma membrane with an asymmetric multicomponent composition: water permeation and ion effects. Biophys J 96:4493–4501CrossRefPubMedPubMedCentralGoogle Scholar
  90. Vernier PT, Ziegler MJ (2007) Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers. J Phys Chem B 111:12993–12996CrossRefPubMedGoogle Scholar
  91. Vernier PT, Sun Y, Gundersen MA (2006a) Nanoelectropulse-driven membrane perturbation and small molecule permeabilization. BMC Cell Biol 7:37Google Scholar
  92. Vernier PT, Ziegler MJ, Sun Y, Gundersen MA, Tieleman DP (2006b) Nanopore- facilitated, voltage-driven phosphatidylserine translocation in lipid bilayers- in cells and in silico. Phys Biol 3:233–247CrossRefPubMedGoogle Scholar
  93. Villemejane J, Mir LM (2009) Physical methods of nucleic acid transfer: general concepts and applications. Br J Pharmacol 157:207–219CrossRefPubMedPubMedCentralGoogle Scholar
  94. Weaver JC (2003) Electroporation of biological membranes from multicellular to nano scales. IEEE Trans Dielectr Electr Insul 10:754–768CrossRefGoogle Scholar
  95. Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160CrossRefGoogle Scholar
  96. Yarmush ML, Golberg A, Serša G, Kotnik T, Miklavčič D (2014) Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 16(1):295CrossRefPubMedGoogle Scholar
  97. Zhou Y, Berry CK, Storer PA, Raphael RM (2007) Peroxidation of polyunsaturated phosphatidyl-choline lipids during electroformation. Biomaterials 28:1298–1306Google Scholar
  98. Ziegler MJ, Vernier PT (2008) Interface water dynamics and porating electric fields for phospholipid bilayers. J Phys Chem B 112:13588–13596CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.CNRS, Université de LorraineVandoeuvre les NancyFrance

Personalised recommendations