An Architecture for Interoperable IoT Ecosystems

  • Stefan Schmid
  • Arne Bröring
  • Denis Kramer
  • Sebastian Käbisch
  • Achille Zappa
  • Martin Lorenz
  • Yong Wang
  • Andreas Rausch
  • Luca Gioppo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10218)

Abstract

The Internet of Things (IoT) is maturing and more and more IoT platforms that give access to things are emerging. However, the real potential of the IoT lies in growing IoT cross-domain ecosystems on top of these platforms that will deliver new, unanticipated value added applications and services. We identified two crucial aspects that are important to grow an IoT ecosystem: (i) interoperability to enable cross-platform and even cross-domain application developments on top of IoT platforms as well as (ii) marketplaces to share and monetize IoT resources. Having these two crucial pillars of an IoT ecosystem in mind, we present in this article the BIG IoT architecture as the foundation to establish IoT ecosystems. The architecture fulfills essential requirements that have been assessed among industry and research organizations as part of the BIG IoT project. We demonstrate a first proof-of-concept implementation in the context of an exemplary smart cities scenario.

Keywords

Internet of Things Architecture Interoperability Marketplace 

Notes

Acknowledgments

This work is financially supported by the project “Bridging the Interoperability Gap” (BIG IoT) funded by the European Commission’s Horizon 2020 research and innovation program under grant agreement No. 688038.

References

  1. 1.
    Gershenfeld, N., Krikorian, R., Cohen, D.: The internet of things. Sci. Am. 291, 76–81 (2004)CrossRefGoogle Scholar
  2. 2.
    Manyika, J., Chui, M., Bisson, P., Woetzel, J., Dobbs, R., Bughin, J., Aharon, D.: The internet of things: mapping the value beyond the hype. McKinsey Global Institute (2015)Google Scholar
  3. 3.
    Alliance, O.M.: Lightweight Machine to Machine Technical Specification, Candidate (2015)Google Scholar
  4. 4.
    Bröring, A., Echterhoff, J., Jirka, S., Simonis, I., Everding, T., Stasch, C., Liang, S., Lemmens, R.: New generation sensor web enablement. Sensors 11, 2652–2699 (2011)CrossRefGoogle Scholar
  5. 5.
    Swetina, J., Lu, G., Jacobs, P., Ennesser, F., Song, J.: Toward a standardized common M2M service layer platform: introduction to oneM2M. IEEE Wirel. Commun. 21, 20–26 (2014)CrossRefGoogle Scholar
  6. 6.
    Bröring, A., Schmid, S., Schindhelm, C.-K., Khelil, A., Kaebisch, S., Kramer, D., Le Phuoc, D., Mitic, J., Anicic, D., Teniente, E.: Enabling IoT Ecosystems through Platform Interoperability. IEEE Softw. (forthcoming) (2017)Google Scholar
  7. 7.
    Soldatos, J., et al.: OpenIoT: open source internet-of-things in the cloud. In: Podnar Žarko, I., Pripužić, K., Serrano, M. (eds.) Interoperability and open-source solutions for the internet of things. LNCS, vol. 9001, pp. 13–25. Springer, Cham (2015). doi: 10.1007/978-3-319-16546-2_3 Google Scholar
  8. 8.
    Bassi, A., Bauer, M., Fiedler, M., Kramp, T., Van Kranenburg, R., Lange, S., Meissner, S.: Enabling things to talk, Designing IoT solutions with the IoT Architectural Reference Model. Springer, Heidelberg (2013)Google Scholar
  9. 9.
    Ramparany, F., Marquez, F.G., Soriano, J., Elsaleh, T.: Handling smart environment devices, data and services at the semantic level with the FI-WARE core platform. In: IEEE International Conference on Big Data (2014)Google Scholar
  10. 10.
    Soldatos, J., Aikaterini, R., Kaldis, J.: VITAL - Virtualization Architecture and Technical Specifications, vol. D2.3, European Commission - FP7 (2015)Google Scholar
  11. 11.
    Barnaghi, P., Tönjes, R., Höller, J., Hauswirth, M., Sheth, A., Anantharam, P.: Citypulse: real-time iot stream processing and large-scale data analytics for smart city applications. In: Europen Semantic Web Conference (ESWC) 2014 (2014)Google Scholar
  12. 12.
    Houyou, A.M., Huth, H.-P., Kloukinas, C., Trsek, H., Rotondi, D.: Agile manufacturing: general challenges and an IoT@Work perspective. In: 17th IEEE International Conference on Emerging Technologies & Factory Automation (ETFA 2012) (2012)Google Scholar
  13. 13.
    World Wide Web Consortium (W3C), Web of Things (WoT). https://www.w3.org/WoT/
  14. 14.
    Mineraud, J., Mazhelis, O., Su, X., Tarkoma, S.: A gap analysis of Internet-of-Things platforms. Comput. Commun. 89–90, 5–16 (2016)Google Scholar
  15. 15.
    Klyne, G., Carrol, J.J.: Resource Description Framework (RDF): Concepts and Abstract Syntax, W3C Recommendation, W3C (2004)Google Scholar
  16. 16.
    Davies, J.: Hypercat: resource discovery on the internet of things. IEEE IoT Newsl., 12 January 2016. http://iot.ieee.org/newsletter/january-2016/hypercat-resource-discovery-on-the-internet-of-things.html

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Stefan Schmid
    • 1
  • Arne Bröring
    • 2
  • Denis Kramer
    • 3
  • Sebastian Käbisch
    • 2
  • Achille Zappa
    • 4
  • Martin Lorenz
    • 5
  • Yong Wang
    • 6
  • Andreas Rausch
    • 6
  • Luca Gioppo
    • 7
  1. 1.Robert Bosch GmbHStuttgartGermany
  2. 2.Siemens AGMunichGermany
  3. 3.Bosch Software Innovations GmbHStuttgartGermany
  4. 4.Insight Centre for Data AnalyticsNUI GalwayGalwayIreland
  5. 5.Atos IT Solutions and Services GmbHViennaAustria
  6. 6.Technical University ClausthalClausthal-ZellerfeldGermany
  7. 7.CSI-PiemonteTorinoItaly

Personalised recommendations