Skip to main content

Efficient Methods of Multicriterial Optimization Based on the Intensive Use of Search Information

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 197))

Abstract

In this paper, an efficient approach for solving complex multicriterial optimization problems is proposed. For the problems being solved, the optimality criteria may be multiextremal ones, and calculating the criteria values may require a large amount of computations. The proposed approach is based on reducing multicriterial problems to nonlinear programming problems via the minimax convolution of the partial criteria, reducing dimensionality by using Peano evolvents, and applying efficient information-statistical global optimization methods. The new contribution is that all the search information obtained in the course of optimization is used to find each current Pareto-optimal solution. The results of the computational experiments show that the proposed approach essentially reduces the computational costs of solving multicriterial optimization problems (by tens and hundreds of times).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    More precisely, the minimization of \(F(\lambda ,y)\) can lead to obtaining weakly efficient solutions (the set of weakly efficient solutions includes the Pareto domain). The situation can be corrected by adding an additional correcting element into (4)—see, for example, [21].

References

  1. Barkalov, K.A., Gergel, V.P.: Multilevel scheme of dimensionality reduction for parallel global search algorithms. In: Proceedings of the 1st International Conference on Engineering and Applied Sciences Optimization, pp. 2111–2124 (2014)

    Google Scholar 

  2. Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.): Multi-Objective Optimization—Interactive and Evolutionary Approaches. Springer, Berlin (2008)

    Google Scholar 

  3. Collette, Y., Siarry, P.: Multiobjective Optimization: Principles and Case Studies (Decision Engineering). Springer, Berlin (2011)

    MATH  Google Scholar 

  4. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  5. Ehrgott, M.: Multicriteria Optimization. Springer (2005). (2nd edn., 2010)

    Google Scholar 

  6. Eichfelder, G.: Scalarizations for adaptively solving multi-objective optimization problems. Comput. Optim. Appl. 44, 249–273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Evtushenko, Y.G., Posypkin, M.A.: A deterministic algorithm for global multi-objective optimization. Optim. Methods Softw 29(5), 1005–1019 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Figueira, J., Greco, S., Ehrgott, M. (eds.): Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, New York (2005)

    MATH  Google Scholar 

  9. Floudas, C.A., Pardalos, M.P.: Recent Advances in Global Optimization. Princeton University Press (2016)

    Google Scholar 

  10. Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Glob. Optim. 21(1), 27–37 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gergel, V.P., Grishagin, V.A., Gergel, A.V.: Adaptive nested optimization scheme for multidimensional global search. J. Glob. Optim. 66(1), 1–17 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Gergel, V., Grishagin, V., Israfilov, R.: Local tuning in nested scheme of global optimization. Procedia Comput. Sci. 51, 865–874 (2015)

    Article  Google Scholar 

  13. Gergel, V.P., Strongin, R.G.: Parallel computing for globally optimal decision making on cluster systems. Futur. Gener. Comput. Syst. 21(5), 673–678 (2005)

    Article  Google Scholar 

  14. Grishagin, V.A.: Operating characteristics of some global search algorithms. Probl. Stoch. Search 7, 198–206 (1978). (In Russian)

    MATH  Google Scholar 

  15. Grishagin, V.A., Sergeyev, Y.D., Strongin, R.G.: Parallel characteristic algorithms for solving problems of global optimization. J. Glob. Optim. 10, 185–206 (1997)

    Article  MATH  Google Scholar 

  16. Hill, J.D.: A search technique for multimodal surfaces. IEE Trans. Syst. Cybern. 5(1), 2–8 (1969)

    Article  Google Scholar 

  17. Hillermeier, C., Jahn, J.: Multiobjective optimization: survey of methods and industrial applications. Surv. Math. Ind. 11, 1–42 (2005)

    MATH  Google Scholar 

  18. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  19. Locatelli, M., Schoen, F.: Global Optimization: Theory, Algorithms, and Applications. SIAM (2013)

    Google Scholar 

  20. Koksalan, M.M., Wallenius, J., Zionts, S.: Multiple Criteria Decision Making: From Early History to the 21st Century. World Scientific, Singapore (2011)

    Book  Google Scholar 

  21. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26, 369–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marler, R.T., Arora, J.S.: Multi-Objective Optimization: Concepts and Methods for Engineering. VDM Verlag (2009)

    Google Scholar 

  23. Mardani, A., Jusoh, A., Nor, K., Khalifah, Z., Zakwan, N., Valipour, A.: Multiple criteria decision-making techniques and their applications—a review of the literature from 2000 to 2014. Econ. Res. Ekonomska Istraživanja 28(1), 516–571 (2015). doi:10.1080/1331677X.2015.1075139

    Article  Google Scholar 

  24. Miettinen, K.: Nonlinear Multiobjective Optimization. Springer (1999)

    Google Scholar 

  25. Pintér, J.D.: Global Optimization in Action (continuous and Lipschitz optimization: algorithms, implementations and applications). Kluwer Academic Publishers, Dortrecht

    Google Scholar 

  26. Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space Filling Curves. Springer (2013)

    Google Scholar 

  28. Siwale, I.: Practical multi-objective programming. In: Technical Report RD-14-2013. Apex Research Limited

    Google Scholar 

  29. Strongin, R.G.: Numerical Methods in Multiextremal Problems: Information-statistical Algorithms. Nauka, Moscow (1978). (in Russian)

    Google Scholar 

  30. Strongin, R., Sergeyev, Ya.: Global Optimization with Non-convex Constraints. Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  31. Tan, K.C., Khor, E.F., Lee, T.H.: Multi-objective Evolutionary Algorithms and Applications. Springer, London (2005)

    MATH  Google Scholar 

  32. Törn, A., Žilinskas, A.: Global Optimization. In: Lecture Notes in Computer Science, vol. 350. Springer, Berlin (1989)

    Google Scholar 

  33. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Frome (2008)

    Google Scholar 

  34. Zavadskas, E.K., Turskis, Z., Kildiene, S.: State of art surveys of overviews on MCDM/MADM methods. Technol. Econ. Dev. Econ. 20, 165–179 (2014)

    Article  Google Scholar 

  35. Zhigljavsky, A.A.: Theory of Global Random Search. Kluwer Academic Publishers, Dordrecht (1991)

    Book  Google Scholar 

  36. Žilinskas, A., Törn, A., Žilinskas, J.: Adaptation of a one-step worst-case optimal univariate algorithm of bi-objective Lipschitz optimization to multidimensional problems. Commun. Nonlinear Sci. Numer. Simul. 21, 89–98 (2015)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by Russian Science Foundation, project No 16-11-10150 “Novel efficient methods and software tools for time-consuming decision making problems using supercomputers of superior performance.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Gergel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gergel, V., Kozinov, E. (2017). Efficient Methods of Multicriterial Optimization Based on the Intensive Use of Search Information. In: Kalyagin, V., Nikolaev, A., Pardalos, P., Prokopyev, O. (eds) Models, Algorithms, and Technologies for Network Analysis. NET 2016. Springer Proceedings in Mathematics & Statistics, vol 197. Springer, Cham. https://doi.org/10.1007/978-3-319-56829-4_3

Download citation

Publish with us

Policies and ethics