Advertisement

System Modeling of Receptor-Induced Apoptosis

  • François Bertaux
  • Dirk Drasdo
  • Grégory Batt
Chapter
Part of the Resistance to Targeted Anti-Cancer Therapeutics book series (RTACT, volume 12)

Abstract

Receptor-induced apoptosis is a complex signal transduction pathway involving numerous protein–protein interactions and post-translational modifications. The response to death receptor stimulation varies significantly from one cell line to another and even from one cell to another within a given cell line. In this context, it is often difficult to assess whether the molecular mechanisms identified so far are sufficient to explain the rich quantitative observations now available, and to detect possible gaps in our understanding. This is precisely where computational systems biology approaches may contribute. In this chapter, we review studies done in this direction, focusing on those that provided a significant insight on the functioning of this complex pathway by tightly integrating experimental and computational approaches.

Keywords

Computational systems biology Signal transduction models Receptor-induced apoptosis Modeling cell types Modeling phenotypic heterogeneity 

Notes

Acknowledgments

This work was supported by the research grants Syne2arti ANR-10-COSINUS-007 and Investissements d’Avenir Iceberg ANR-IABI-3096 from the French National Research Agency.

References

  1. 1.
    Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N (2014) Apoptosis and molecular targeting therapy in cancer. Biomed Res Int 2014:150823–150845Google Scholar
  2. 2.
    Johnstone RW, Frew AJ, Smyth MJ (2008) The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8:782–798. doi: 10.1038/nrc2465 CrossRefPubMedGoogle Scholar
  3. 3.
    Ashkenazi A, Dixit VM (1999) Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11:255–260. doi: 10.1016/S0955-0674(99)80034-9 CrossRefPubMedGoogle Scholar
  4. 4.
    Kimberley FC, Screaton GR (2004) Following a TRAIL: update on a ligand and its five receptors. Cell Res 14:359–372CrossRefPubMedGoogle Scholar
  5. 5.
    Ashkenazi A (2008) Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov 7:1001–1012CrossRefPubMedGoogle Scholar
  6. 6.
    Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241CrossRefPubMedGoogle Scholar
  7. 7.
    Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59CrossRefPubMedGoogle Scholar
  8. 8.
    Wiezorek J, Holland P, Graves J (2010) Death receptor agonists as a targeted therapy for cancer. Clin Cancer Res 16:1701–1708CrossRefPubMedGoogle Scholar
  9. 9.
    Bentele M, Eils R (2005) Systems biology of apoptosis. In: Alberghina L, Westerhoff HV (eds) Systems biology (Stevenage). Springer, Berlin/Heidelberg, pp 349–372CrossRefGoogle Scholar
  10. 10.
    Bialik S, Zalckvar E, Ber Y, Rubinstein AD, Kimchi A (2010) Systems biology analysis of programmed cell death. Trends Biochem Sci 35:556–564CrossRefPubMedGoogle Scholar
  11. 11.
    Lavrik IN (2010) Systems biology of apoptosis signaling networks. Curr Opin Biotechnol 21:551–555CrossRefPubMedGoogle Scholar
  12. 12.
    Spencer SL, Sorger PK (2011) Measuring and modeling apoptosis in single cells. Cell 144:926–939CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Schleich K, Lavrik IN (2013) Mathematical modeling of apoptosis. Cell Commun Signal 11:44CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Huber HJ, McKiernan RG, Prehn JHM (2014) Harnessing system models of cell death signalling for cytotoxic chemotherapy: towards personalised medicine approaches? J Mol Med 92:227–237CrossRefPubMedGoogle Scholar
  15. 15.
    Lavrik IN (2014) Systems biology of death receptor networks: live and let die. Cell Death Dis 5:e1259CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Flusberg D, Sorger PK (2015) Surviving apoptosis: life-death signaling in single cells. Trends Cell Biol 25(8):446–458CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Flusberg DA, Roux J, Spencer SL, Sorger PK (2013) Cells surviving fractional killing by TRAIL exhibit transient but sustainable resistance and inflammatory phenotypes. Mol Biol Cell 24:2186–2200CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bertaux F, Stoma S, Drasdo D, Batt G (2014) Modeling dynamics of cell-to-cell variability in TRAIL-induced apoptosis explains fractional killing and predicts reversible resistance. PLoS Comput Biol 10:e1003893. doi: 10.1371/journal.pcbi.1003893 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fussenegger M, Bailey JE, Varner J (2000) A mathematical model of caspase function in apoptosis. Nat Biotechnol 18:768–774. doi: 10.1038/77589 CrossRefPubMedGoogle Scholar
  20. 20.
    Eissing T, Conzelmann H, Gilles ED, Allgöwer F, Bullinger E, Scheurich P (2004) Bistability analyses of a caspase activation model for receptor-induced apoptosis. J Biol Chem 279:36892–36897. doi: 10.1074/jbc.M404893200 CrossRefPubMedGoogle Scholar
  21. 21.
    Bentele M, Lavrik I, Ulrich M, Stösser S, Heermann DW, Kalthoff H, Krammer PH, Eils R (2004) Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J Cell Biol 166:839–851CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2:156–162CrossRefPubMedGoogle Scholar
  23. 23.
    Tyas L, Brophy VA, Pope A, Rivett AJ, Tavare JM (2000) Rapid caspase-3 activation during apoptosis revealed using fluorescence-resonance energy transfer. EMBO Rep 1:266–270CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rehm M, Huber HJ, Dussmann H, Prehn JHM (2006) Systems analysis of effector caspase activation and its control by X-linked inhibitor of apoptosis protein. EMBO J 25:4338–4349CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Albeck JG, Burke JM, Spencer SL, Lauffenburger DA, Sorger PK (2008) Modeling a snap-action, variable-delay switch controlling extrinsic cell death. PLoS Biol 6:2831–2852. doi: 10.1371/journal.pbio.0060299 CrossRefPubMedGoogle Scholar
  26. 26.
    Albeck JG, Burke JM, Aldridge BB, Zhang M, DA L, Sorger PK (2008) Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. Mol Cell 30:11–25. doi: 10.1016/j.molcel.2008.02.012 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Neumann L, Pforr C, Beaudouin J, Pappa A, Fricker N, Krammer PH, Lavrik IN, Eils R (2010) Dynamics within the CD95 death-inducing signaling complex decide life and death of cells. Mol Syst Biol 6:352. doi: 10.1038/msb.2010.6 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459:428–432. doi: 10.1038/nature08012 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rehm M, Huber HJ, Hellwig CT, Anguissola S, Dussmann H, Prehn JHM (2009) Dynamics of outer mitochondrial membrane permeabilization during apoptosis. Cell Death Differ 16:613–623CrossRefPubMedGoogle Scholar
  30. 30.
    Bhola PD, Simon SM (2009) Determinism and divergence of apoptosis susceptibility in mammalian cells. J Cell Sci 122:4296–4302. doi: 10.1242/jcs.055590 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sigal A, Milo R, Cohen A, Geva-Zatorsky N, Klein Y, Liron Y, Rosenfeld N, Danon T, Perzov N, Alon U (2006) Variability and memory of protein levels in human cells. Nature 444:643–646. doi: 10.1038/nature05316 CrossRefPubMedGoogle Scholar
  32. 32.
    Toivonen HT, Meinander A, Asaoka T, Westerlund M, Pettersson F, Mikhailov A, Eriksson JE, Saxén H (2011) Modeling reveals that dynamic regulation of c-FLIP levels determines cell-to-cell distribution of CD95-mediated apoptosis. J Biol Chem 286:18375–18382CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Aldridge BB, Gaudet S, DA L, Sorger PK (2011) Lyapunov exponents and phase diagrams reveal multi-factorial control over TRAIL-induced apoptosis. Mol Syst Biol 7:1–21. doi: 10.1038/msb.2011.85 Google Scholar
  34. 34.
    Stoma S, Donzé A, Bertaux F, Maler O, Batt G (2013) STL-based analysis of TRAIL-induced apoptosis challenges the notion of type I/type II cell line classification. PLoS Comput Biol 9:e1003056. doi: 10.1371/journal.pcbi.1003056 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Schmid J, Dussmann H, Boukes GJ, Flanagan L, Lindner AU, O’Connor CL, Rehm M, Prehn JHM, Huber HJ (2012) Systems analysis of cancer cell heterogeneity in caspase-dependent apoptosis subsequent to mitochondrial outer membrane permeabilization. J Biol Chem 287:41546–41559CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Passante E, Wurstle ML, Hellwig CT, Leverkus M, Rehm M (2013) Systems analysis of apoptosis protein expression allows the case-specific prediction of cell death responsiveness of melanoma cells. Cell Death Differ 20:1521–1531CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Falschlehner C, Emmerich CH, Gerlach B, Walczak H (2007) TRAIL signalling: decisions between life and death. Int J Biochem Cell Biol 39:1462–1475. doi: 10.1016/j.biocel.2007.02.007 CrossRefPubMedGoogle Scholar
  38. 38.
    Roux J, Hafner M, Bandara S, Sims JJ, Hudson H, Chai D, Sorger PK (2015) Fractional killing arises from cell-to-cell variability in overcoming a caspase activity threshold. Mol Syst Biol 11:803CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.INRIA ParisParis cedex 12France
  2. 2.Department of MathematicsImperial College LondonLondonUK
  3. 3.Inria Saclay – Ile-de-FrancePalaiseauFrance

Personalised recommendations