Skip to main content

Medicinally Important Edible Fruits

  • Chapter
  • First Online:
Medicinally Important Trees
  • 1738 Accesses

Abstract

Many edible fruits contain important nutrients and phytochemicals of medicinal importance including antioxidants, flavonoids, and glycosides, which are important anticarcinogenic, antimicrobial, antidiabetic, and antiaging substances. Tree strees included for their medicinal value are Citrus spp., Phoenix spp., Malus spp., Mangifera spp., Prunus spp., Punica granatum, and Psidium guajava.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrahim SI, Almagboul AZ, Omer MEA et al (2002) Antimicrobial activity of Psidium guajava L. Fitoterapia 73(7):713–715

    Article  CAS  PubMed  Google Scholar 

  • Al Farsi M, Lee CY (2008) Nutritional and functional properties of dates: a review. Crit Rev Food Sci Nutr 48:877–887

    Article  CAS  Google Scholar 

  • Al Qarawi AA, Rahman HA, Ali BH et al (2008) Nephroprotective action of Phoenix dactylifera in gentamicin-induced nephrotoxicity. Pharm Biol 46:227–230

    Article  Google Scholar 

  • Al-Ashaal HA, El-Shelawy ST (2011) Antioxidant capacity of hesperidin from citrus peel using electron spin resonance and cytotoxic activity against human carcinoma cell lines. Pharm Biol 49(3):276–282

    Article  CAS  PubMed  Google Scholar 

  • Al-Turki SM (2008) Antioxidant properties of date palm cultivars. Proquest, UK, p 113

    Google Scholar 

  • Arul D, Subramanian P (2013) Naringenin (citrus flavonone) induces growth inhibition, cell cycle arrest and apoptosis in human hepatocellular carcinoma cells. Pathol Oncol Res 19(4):763–770

    Article  CAS  PubMed  Google Scholar 

  • Aruoma OI, Landes B, Ramful-Baboolall D et al (2012) Functional benefits of citrus fruits in the management of diabetes. Prev Med 54:S12–S16

    Article  PubMed  Google Scholar 

  • Assini JM, Mulvihill EE, Sutherland BE et al (2013) Naringenin prevents cholesterol-induced systemic inflammation, metabolic dysregulation, and atherosclerosis in Ldlr/mice. J Lipid Res 54(3):711–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augstburger F, Berger J, Censkowsky U et al (2002) Date palm. Naturland, Germany

    Google Scholar 

  • Begum S, Hassan SI, Ali SN et al (2004) Chemical constituents from the leaves of Psidium guajava. Nat Prod Res 18(2):135–140

    Article  CAS  PubMed  Google Scholar 

  • Bilgari F, Alkarkhi AFM, Easa AM (2009) Cluster analysis of antioxidant compounds in dates (Phoenix dactylifera): effect of long-term cold storage. Food Chem 112:998–1001

    Article  CAS  Google Scholar 

  • Biswas B, Rogers K, McLaughlin F et al (2013) Antimicrobial activities of leaf extracts of guava (Psidium guajava L.) on two gram-negative and gram-positive bacteria. Int J Microbiol Article ID 746165, 7

    Google Scholar 

  • Bokhari NA, Kahkashan P (2012) In vitro inhibition potential of (Phoenix dactylifera L.) extracts on the growth of pathogenic fungi. J Med Plant Res 6:1083–1088

    Google Scholar 

  • Boyer J, Liu RH (2004) Apple phytochemicals and their health benefits. Nutr J 5:1–15

    Google Scholar 

  • Braga TV, das Dores RGR, Ramos CS et al (2014) Antioxidant, antibacterial and antitumor activity of ethanolic extract of the Psidium guajava leaves. Am J Plant Sci 2014(5):3492–3500

    Article  Google Scholar 

  • Bragg P, Bragg PC (2008) Apple cider vinegar miracle health system (Bragg apple cider vinegar miracle health system: with the Bragg healthy lifestyle). Health Science, Santa Barbara

    Google Scholar 

  • Burkill HM (1997) The useful plants of west tropical Africa, vol 4, 2nd edn. Families M– R. Royal Botanic Gardens, Kew

    Google Scholar 

  • Burt SA (2004) Essential oils: their antibacterial properties and potential applications in foods: a review. Int J Food Microbiol 94:223–253

    Article  CAS  PubMed  Google Scholar 

  • Cevallos-Casals B, Byrne D, Okie R et al (2005) Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties. Food Chem 96:273–280

    Article  CAS  Google Scholar 

  • Chan A, Shea T (2009) Dietary supplementation with apple juice decreases endogenous amyloid-beta levels in murine brain. J Alzheimers Dis 16:167–171

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary P, Mehra RK, Kumar R et al (2015) Hepatoprotective effect of Prunus persica leaves extract against carbon tetrachloride induced hepatic injury in rats. Pharm Lett 7(2):150–153

    CAS  Google Scholar 

  • Chede PS (2013) Phytochemical analysis of Citrus sinensis peel. Int J Pharm Biol Sci 4(1):B339–B343

    Google Scholar 

  • Chen KH, Weng MS, Lin JK (2007) Tangeretin suppresses IL-1 beta-induced cyclooxygenase (COX-2) expression through inhibition of p38 MAPK, JNK, and AKT activation in human lung carcinoma cells. Biochem Pharmacol 73:215–227

    Article  CAS  PubMed  Google Scholar 

  • Cuthbertson D, Andrews PK, Reganold JP et al (2012) Utility of metabolomics toward assessing the metabolic basis of quality traits in apple fruit with an emphasis on antioxidants. J Agric Food Chem 60:8552–8560. 21

    Google Scholar 

  • Duthie G, Crozier A (2000) Plant-derived phenolic antioxidants. Curr Opin Lipidol 11:43–47

    Article  CAS  PubMed  Google Scholar 

  • Ekwenye UN, Edeha OV (2010) The antibacterial activity of crude leaf extract of Citrus sinensis (sweet orange). Int J Pharm Bio Sci 1(4):742–750

    Google Scholar 

  • Fratianni F, Sada A, Cipriano L et al (2007) Biochemical characteristics, antimicrobial and mutagenic activity in organically and conventionally produced Malus domestica, Annurca. Open Food Sci J 1:10–16

    Article  CAS  Google Scholar 

  • Fuhrman B, Volkova N, Aviram M (2005) Pomegranate juice inhibits oxidized LDL uptake and cholesterol biosynthesis in macrophages. J Nutr Biochem 16:570–576

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Mazza G (1995) Characterization, quantification, and distribution of anthocyanins and colorless phenolics in sweet cherries. J Agric Food Chem 43:343–346

    Article  CAS  Google Scholar 

  • Gerhauser C (2008) Cancer chemopretentive potential of apples, apple juice, and apple components. Planta Med 74:1608–1624. 31

    Google Scholar 

  • Gil M, Tomas-Barberan FA, Hess-Pierce B et al (2002) Antioxidant capacities, phenolic compounds, carotenoids, and vitamin a contents of nectarine, peach, and plum cultivars from California. J Agric Food Chem 50:4976–4982

    Article  CAS  PubMed  Google Scholar 

  • Gosslau A, Chen KY, Ho CT et al (2014) Anti-inflammatory effects of characterized orange peel extracts enriched with bioactive polymethoxyflavones. Food Sci Human Wellness 3(1):26–35

    Article  Google Scholar 

  • Graziani G, D’Argenio G, Tuccillo C et al (2005) Apple phenol extracts prevent damage to human gastric epithelial cells in vitro and to rat gastric mucosa in vivo. Gut 54:193–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guha S, Ghosal S, Chattopadhyay U (1996) Antitumor, immunomodulatory and anti-HIV effect of mangiferin, a naturally occurring glucosylxanthone. Chemotherapy 42:443–451

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez RM, Mitchell SRV (2008) Psidium guajava: a review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 117(1):1–27. doi:10.1016/j.jep.2008.01.025

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Hanley JA (2010) Mortality reductions produced by sustained prostate cancer screening have been underestimated. J Med Screen 17(3):147–151

    Article  PubMed  Google Scholar 

  • Hong MY, Seeram NP, Heber D (2008) Pomegranate polyphenols down-regulate expression of androgen-synthesizing genes in human prostate cancer cells over expressing the androgen receptor. J Nutr Biochem 19:848–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang S, Shih P, Yen G (2012) Neuroprotective effects of citrus flavonoids. J Agric Food Chem 60(4):877–885

    Article  CAS  PubMed  Google Scholar 

  • Hyson DA (2011) A comprehensive review of apples and apple components and their relationship to human health. Am Soc Nutr Adv Nutr 2:408–420

    Article  CAS  Google Scholar 

  • Ishurda Q, John FK (2004) The anticancer activity of polysaccharide prepared from Libyan dates (Phoenix dactylifera L.) Carbohydr Polym 59:531–535

    Article  CAS  Google Scholar 

  • Jagetia GC, Baliga MS (2005) Radioprotection by mangiferin in DBAxC57BL mice: a preliminary study. Phytomedicine 12:209–215

    Article  CAS  PubMed  Google Scholar 

  • Jaiarj P, Khooshaswan P, Wongkrajang Y et al (1999) Anticough and antimicrobial activities of Psidium guajava Linn. Leaf extract. J Ethnopharmacol 67(2):203–212

    Article  CAS  PubMed  Google Scholar 

  • Janakiram NB, Rao CV (2008) Molecular markers and targets for colorectal cancer prevention. Acta Pharmacol Sin 29:1–20

    Article  CAS  PubMed  Google Scholar 

  • Joseph B, Priya RM (2011) Phytochemical and biopharmaceutical aspects of Psidium guajava (L.) essential oil: a review. Res J Med Plant 5:432–442

    Article  Google Scholar 

  • Kanaze FI, Termentzi A, Gabrieli C et al (2009) The phytochemical analysis and antioxidant activity assessment of orange peel (Citrus sinensis) cultivated in Greece-Crete indicates a new commercial source of hesperidin. Biomed Chromatogr 23(3):239–249

    Article  CAS  PubMed  Google Scholar 

  • Kawaii S, Tomono Y, Katase E et al (1999) Antiproliferative activity of flavonoids on several cancer cell lines. Biosci Biotechnol Biochem 63:896–899

    Article  CAS  PubMed  Google Scholar 

  • Kawaii S, Yasuhiko T, Eriko K et al (2000) Quantitative study of flavonoids in leaves of Citrus plants. J Agric Food Chem 48:3865–3871

    Article  CAS  PubMed  Google Scholar 

  • Khan SA (2009) The role of pomegranate (Punica granatum L.) in colon cancer. Pak J Pharm Sci 22:346–348

    PubMed  Google Scholar 

  • Khan MLH, Ahmad J (1985) A pharmacognostic study of Psidium guajava L. Int J Crude Drug Res 23:95–103

    Article  Google Scholar 

  • Khan N, Afaq F, Kweon MH et al (2007) Oral consumption of pomegranate fruit extract inhibits growth and progression of primary lung tumors in mice. Cancer Res 67:3475–3482

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Choi EM (2009) Stimulation of osteoblastic differentiation and inhibition of interleukin-6 and nitric oxide in MC3T3-E1 cells by pomegranate ethanol extract. Phytother Res 23:737–739

    Article  PubMed  Google Scholar 

  • Kim DO, Chun K, Kim YJ et al (2003) Quantification of polyphenolics and their antioxidant capacity in fresh plums. J Agric Food Chem 51:6509–6515

    Article  CAS  PubMed  Google Scholar 

  • Kou MC, Fu SH, Weng CY et al (2013) Effects of citrus flavonoids 5-hydroxy-3,5,6,7,8,3′,4′-hexamethoxyflavone and 3,5,6,7,8,3′,4′-heptamethoxyflavone, on the activities of macrophage scavenger receptors and the hepatic LDL receptor. Food Funct 4:602–609

    Article  CAS  PubMed  Google Scholar 

  • Koyama S, Cobb LJ, Mehta HH et al (2010) Pomegranate extract induces apoptosis in human prostate cancer cells by modulation of the IGF-IGFBP axis. Growth Horm IGF Res 20:55–62

    Article  CAS  PubMed  Google Scholar 

  • Kumar V (2007) Secret benefits of lemon and honey. New Dawn Press, Inc, Elgin

    Google Scholar 

  • Kurowska EM, Manthey JA (2004) Hypolipidemic effects and absorption of citrus polymethoxylated flavones in hamsters with diet-induced hypercholesterolemia. J Agric Food Chem 52(10):2879–2886

    Article  CAS  PubMed  Google Scholar 

  • Leiro JM, Alvarez E, Arranz JA et al (2003) In vitro effects of mangiferin on superoxide concentrations and expression of the inductible nitric oxide synthase, tumor necrosis factor-α and transforming growth factor-β genes. Biochem Pharmacol 65:1361–1371

    Article  CAS  PubMed  Google Scholar 

  • Leiro J, Arranz JA, Yanez M et al (2004) Expression profiles of genes involved in the mouse nuclear factor-κB signal transduction pathway are modulated by mangiferin. Int Immunopharmacol 4:763–778

    Article  CAS  PubMed  Google Scholar 

  • Li S, Lo CY, Ho CT (2006) Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange (Citrus sinensis) peel. J Agric Food Chem 54:4176–4185

    Article  CAS  PubMed  Google Scholar 

  • Li S, Lin YC, Ho CT et al (2014a) Formulated extract from multiple citrus peels impairs dendritic cell functions and attenuates allergic contact hypersensitivity. Int Immunopharmacol 20:12–23

    Article  PubMed  CAS  Google Scholar 

  • Li S, Wang H, Guo L et al (2014b) Chemistry and bioactivity of nobiletin and its metabolites. J Funct Foods 6:2–10

    Article  CAS  Google Scholar 

  • Lin CY, Yin MC (2012) Renal protective effects of extracts from fruit of Psidium guajava L. in diabetic mice. Plant Foods Hum Nutr 67(3):303–308

    Article  CAS  PubMed  Google Scholar 

  • Londoño-Londoño J, de Lima VR, Lara O et al (2012) Clean recovery of antioxidant flavonoids from citrus peel: optimizing an aqueous ultrasound-assisted extraction method. Food Chem 119:81–87

    Article  CAS  Google Scholar 

  • Luo G, Guan X, Zhou L (2008) Apoptotic effect of citrus fruit extract nobiletin on lung cancer cell line A549 in vitro and in vivo. Cancer Biol Ther 7:966–973

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Jin S, Zhang Y et al (2014) Inhibitory effects of nobiletin on hepatocellular carcinoma in vitro and in vivo. Phytother Res 28:560–567

    Article  CAS  PubMed  Google Scholar 

  • Malik A, Mukhtar H (2006) Prostate cancer prevention through pomegranate fruit. Cell Cycle 5:371–373

    Article  CAS  PubMed  Google Scholar 

  • Mani A, Mishra R, Thomas G (2011) Elucidation of diversity among Psidium species using morphological and SPAR methods. J Phytology 3:53–61

    CAS  Google Scholar 

  • Manosroi J, Dhumtanom P, Manosroi A (2006) Antiproliferative activity of essential oil extracted from Thai medicinal plants on KB and P388 cell lines. Cancer Lett 235:114–120

    Article  CAS  PubMed  Google Scholar 

  • Mao QC, Zhou YC, Li RM et al (2010) Inhibition of HIV-1 mediated cell-cell fusion by saponin fraction from Psidium guajava leaf. Zhong Yao Cai 33:1751–1754

    CAS  PubMed  Google Scholar 

  • Marks SC, Mullen W, Borges G et al (2009) Absorption, metabolism, and excretion of cider dihyrochalcones in healthy humans and subjects with an ileostomy. J Agric Food Chem 57:2009–2015

    Article  CAS  PubMed  Google Scholar 

  • Martin JHJ, Crotty S, Warren P et al (2007) Does an apple a day keep the doctor away because a phytoestrogen a day keeps the virus at bay? A review of the anti-viral properties of phytoestrogens. Phytochemistry 68(3):266–274

    Article  CAS  PubMed  Google Scholar 

  • Metwally AM, Omar AA, Harraz FM et al (2011) Phytochemical investigation and antimicrobial activity of Psidium guajava L. leaves. Pharmacogn Mag 6:212–218

    Google Scholar 

  • Miura T, Ichiki H, Hashimoto I et al (2001) Antidiabetic activity of a xanthone compound, mangiferin. Phytomedicine 8:85–87

    Article  CAS  PubMed  Google Scholar 

  • Mohan M, Waghulde H, Kasture S (2010) Effect of pomegranate juice on angiotensin II-induced hypertension in diabetic Wistar rats. Phytother Res 2:196–203

    Article  Google Scholar 

  • Morton JF (1981) Atlas of medicinal plants of middle America. Charles C. C. Thomas, Springfield, p 10

    Google Scholar 

  • Mulvihill EE, Huff MW (2012) Citrus flavonoids and the prevention of atherosclerosis. Cardiovasc Hematol Disord Drug Targets 12(2):84–91

    Article  CAS  PubMed  Google Scholar 

  • Muruganandan S, Gupta S, Kataria M et al (2002) Mangiferin protects the streptozotocin-induced oxidative damage to cardiac and renal tissues in rats. Toxicology 176:165–173

    Article  CAS  PubMed  Google Scholar 

  • Muruganandan S, Scrinivasan K, Gupta S et al (2005) Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats. J Ethnopharmacol 97:497–501

    Article  CAS  PubMed  Google Scholar 

  • Nadkarni KM, Nadkarni AK (1999) Indian materia medica-with ayurvedic, unani-tibbi, siddha, allopathic, homeopathic, naturopathic and home remedies. Popular Prakashan Private Limited, Bombay

    Google Scholar 

  • Nakajima A, Aoyama Y, Nguyen TT et al (2013) Nobiletin, a citrus flavonoid, ameliorates cognitive impairment, oxidative burden, and hyperphosphorylation of tau in senescence-accelerated mouse. Behav Brain Res 250:351–360

    Article  CAS  PubMed  Google Scholar 

  • Ncube NS, Afolayan AJ, Okoh AI (2008) Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. Afr J Biotechnol 7(12):1797–1806

    Article  CAS  Google Scholar 

  • Noda Y, Kaneyuki T, Mori A et al (2002) Antioxidant activities of pomegranate fruit extract and its anthocyanidins: delphinidin, cyanidin, and pelargonidin. J Agric Food Chem 50:166–171

    Article  CAS  PubMed  Google Scholar 

  • Obertova Z, Brown C, Holmes M et al (2012) Prostate cancer incidence and mortality in rural men – a systematic review of the literature. Rural Remote Health J 12(2):2039

    CAS  Google Scholar 

  • Ojewole JA (2006) Antiinflammatory and analgesic effects of Psidium guajava Linn (Myrtaceae) leaf aqueous extract in rats and mice. Methods Find Exp Clin Pharmacol 27(10):689–695

    Article  CAS  Google Scholar 

  • Ortuno AA, Baidez P, Gomez MC et al (2006) Citrus paradisi and Citrus sinensis flavonoids: their influence in the defense mechanism against Penicillium digitatum. Food Chem 98(2):351–358

    Article  CAS  Google Scholar 

  • Pan MH, Li S, Lai CS et al (2012) Inhibition of citrus flavonoids on 12-O-tetradecanoylphorbol 13-acetate-induced skin inflammation and tumorigenesis in mice. Food Sci Human Wellness 1:65–73

    Article  Google Scholar 

  • Radi M, Mahrouz M, Jaouad A et al (1997) Phenolic composition, browning susceptibility, and carotenoid content of several apricot cultivars at maturity. Hortscience 32:1087–1091

    CAS  Google Scholar 

  • Rahimi HR, Arastoo M, Ostad SN (2012) A comprehensive review of Punica granatum (pomegranate) properties in toxicological, pharmacological, cellular and molecular biology researches. Iran J Pharm Res 11(2):385–400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rawsona NE, Hob C, Lic S (2014) Efficacious anti-cancer property of flavonoids from citrus peels. Food Sci Human Wellness 3(3–4):104–109

    Article  Google Scholar 

  • Rettig MB, Heber D, An J et al (2008) Pomegranate extract inhibits androgen-independent prostate cancer growth through a nuclear factor-kappaB-dependent mechanism. Mol Cancer Ther 7:2662–2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricci D, Giamperi L, Bucchini A et al (2006) Antioxidant activity of Punica granatum fruits. Fitoterapia 77:310–312

    Article  CAS  PubMed  Google Scholar 

  • Rivera DG, Balmaseda IH, Leon AA et al (2006) Anti-allergic properties of Mangifera indica L. extract (Vimang) and contribution of its glucosylxanthone mangiferin. J Pharm Pharmacol 58:385–392

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez RC, Cruz PH, Rios HG (2001) Lectins in fruits having gastrointestinal activity their participation in hemagglunating property of Escherichia coli O157. Arch Med Res 32(4):251–257

    Article  Google Scholar 

  • Rosenblat M, Volkova N, Aviram M (2010) Pomegranate juice (PJ) consumption antioxidative properties on mouse macrophages, but not PJ beneficial effects on macrophage cholesterol and triglyceride metabolism, are mediated via PJ-induced stimulation of macrophage. Atherosclerosis 212:86–92

    Article  CAS  PubMed  Google Scholar 

  • Ross IA (1999) Medicinal plants of the world, chemical constituents, traditional and modern medicinal uses. Humana Press, Totowa, pp 197–205

    Google Scholar 

  • Scartezzini P, Speroni E (2000) Review on some plants of Indian traditional medicine with antioxidant activity. J Ethnopharmacol 71:23–43

    Article  CAS  PubMed  Google Scholar 

  • Seeram NP, Aronson WJ, Zhang Y et al (2007) Pomegranate ellagitannin-derived metabolites inhibit prostate cancer growth and localize to the mouse prostate gland. J Agric Food Chem 55:7732–7737

    Article  CAS  PubMed  Google Scholar 

  • Serra AT, Rocha J, Matias SB et al (2012) Evaluation of cardiovascular protective effect of different apple varieties—correlation of response with composition. Food Chem 135:2378–2386

    Article  CAS  PubMed  Google Scholar 

  • Shaheen HM (2000) Effect of Psidium guajava leaves on some aspects of central nervous system in mice. Phytother Res 14(2):107–111

    Article  CAS  PubMed  Google Scholar 

  • Sheikh MI (1993) Trees of Pakistan. USAID

    Google Scholar 

  • Shruthi SD, Roshan A, Timilsina SS et al (2013) A review on The medicinal plant Psidium Guajava Linn. (Myrtaceae). J Drug Deliv Ther 3(2):162–168

    Google Scholar 

  • Singh RB, Rastogi SS, Singh NK et al (1992) Effects of guava intake on serum total and high-density lipoprotein cholesterol levels and on systemic blood pressure, Am J Cardiol 70(15):1287–1291. 80

    Google Scholar 

  • Singh RB, Rastogi SS, Singh NK et al (1993) Can guava fruit intake decrease blood pressure and blood lipids. J Hum Hypertens 7(1):33–38

    CAS  PubMed  Google Scholar 

  • Song JK, Bae JM (2013) Citrus fruit intake and breast cancer risk: a quantitative systematic review. J Breast Cancer 16(1):72–76

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoilova I, Gargova S, Stoyanova A et al (2005) Antimicrobial and antioxidant activity of the polyphenol mangiferin. Herbal Polonica 51:37–44

    CAS  Google Scholar 

  • Stover E, Mercure EW (2007) The pomegranate: a new look at the fruit of paradise. Hortic Sci 42:1088–1092

    Google Scholar 

  • Sturgeon SR, Ronnenberg AG (2010) Pomegranate and breast cancer: possible mechanisms of prevention. Nutr Rev 68:122–128

    Article  PubMed  Google Scholar 

  • Sultana S, Asif HM, Nazar HM (2014) Medicinal plants combating against cancer—a green anticancer approach. Asian Pac J Cancer Prev 15(11):4385–4394

    Article  PubMed  Google Scholar 

  • Sunagawa M, Shimada S, Zhang Z et al (2004) Plasma insulin concentration was increased by long-term ingestion of guava juice in spontaneous non-insulin-dependent diabetes mellitus (NIDDM) rats. J Health Sci 50(6):674–678

    Article  CAS  Google Scholar 

  • Toklu HZ, Dumlu MU, Sehirli O et al (2007) Pomegranate peel extract prevents liver fibrosis in biliary-obstructed rats. J Pharm Pharmacol 59:1287–1295

    Article  CAS  PubMed  Google Scholar 

  • Tomás-Barberán FA, Gil MI, Cremin P et al (2001) HPLC-DAD-ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. J Agric Food Chem 49:4748–4760

    Article  PubMed  CAS  Google Scholar 

  • Tona L, Kambu K, Mesia K et al (1999) Biological screening of traditional preparations from some medicinal plants used as antidiarrhoeal in Kinshasa, Congo. Phytomedicine 6:59–66

    Article  CAS  PubMed  Google Scholar 

  • Tourjee KR, Barrett DM, Romero MV et al (1998) Measuring flesh color variability among processing clingstone peach genotypes differing in carotenoid composition. J Am Soc Hortic Sci 123:433–437

    CAS  Google Scholar 

  • Türk G, Sönmez M, Aydin M et al (2008) Effects of pomegranate juice consumption on sperm quality, spermatogenic cell density, antioxidant activity, and testosterone level in male rats. Clin Nutr 27:289–296

    Article  PubMed  CAS  Google Scholar 

  • Vrhovsek U, Rigo A, Tonon D et al (2004) Quantitation of polyphenols in different apple varieties. J Agric Food Chem 52:6532–6538

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang J, Fang L (2014) Anticancer activities of citrus peel polymethoxyflavones related to angiogenesis and others. Biomed Res Int Article ID 453972, 10

    Google Scholar 

  • West T, Atzeva M, Holtzman DM (2007) Pomegranate polyphenols and resveratrol protect the neonatal brain against hypoxic-ischemic injury. Dev Neurosci 29:363–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yabuki Y, Ohizumi Y, Yokosuka A et al (2014) Nobiletin treatment improves motor and cognitive deficits seen in MPTP-induced Parkinson model mice. Neuroscience 259:126–141

    Article  CAS  PubMed  Google Scholar 

  • Yoshimi N, Matsunaga K, Katayama M et al (2001) The inhibitory effects of mangiferin, a naturally occurring glucosylxanthone, in bowel carcinogenesis of male F344 rats. Cancer Lett 163:163–170

    Article  CAS  PubMed  Google Scholar 

  • Zhu XM, Song JX, Huang ZZ et al (1993) Antiviral activity of mangiferin against herpes simplex virus type 2 in vitro. Zhongguo Yaoli Xuebao 14:452–454

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Khan, A.S. (2017). Medicinally Important Edible Fruits. In: Medicinally Important Trees. Springer, Cham. https://doi.org/10.1007/978-3-319-56777-8_12

Download citation

Publish with us

Policies and ethics